Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania

2013 ◽  
Vol 24 (7) ◽  
pp. 075601 ◽  
Author(s):  
Pengzhan Sun ◽  
Renzhi Ma ◽  
Kunlin Wang ◽  
Minlin Zhong ◽  
Jinquan Wei ◽  
...  
2022 ◽  
Author(s):  
Jingfei Zhang ◽  
Guoyue Shi ◽  
Yu Zhang

Herein, the Au@Ag@β-cyclodextrin (CD) nanoparticles with relatively uniform shape and size at ~13 nm in diameter have been successfully synthesized, the surface of the synthesized nanoparticles is evenly coated by...


2021 ◽  
Author(s):  
Yinxu Pan ◽  
Haiyan Yi ◽  
Bei Nie

Exodo-metallofullerene microcrystals of SnI4 intercalated C60 architectures were fabricated by utilizing “coffee ring” effect during a simple drop-drying process, which self-assembles into a SnI4-fullerene hybrid structures on a pinned circle...


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yanan Li ◽  
Qiang Yang ◽  
Mingzhu Li ◽  
Yanlin Song

Abstract The mechanism of droplet drying is a widely concerned fundamental issue since controlling the deposition morphology of droplet has significant influence on printing, biology pattern, self-assembling and other solution-based devices fabrication. Here we reveal a striking different kinetics-controlled deposition regime beyond the ubiquitous coffee-ring effect that suspended particles tend to kinetically accumulate at the air-liquid interface and deposit uniformly. As the interface shrinkage rate exceeds the particle average diffusion rate, particles in vertical evaporation flow will be captured by the descending surface, producing surface particle jam and forming viscous quasi-solid layer, which dramatically prevents the trapped particles from being transported to drop edge and results in uniform deposition. This simple, robust drying regime will provide a versatile strategy to control the droplet deposition morphology, and a novel direction of interface assembling for fabricating superlattices and high quality photonic crystal patterns.


Author(s):  
Jingzhi Hu ◽  
Zhaohua Xu ◽  
Kai Yuan ◽  
Chao Shen ◽  
Keyu Xie ◽  
...  

Author(s):  
S.S. Shahruddin ◽  
N. Ideris ◽  
N.F. Abu Bakar ◽  
A.L. Ahmad ◽  
N.F.C. Lah

2020 ◽  
Vol 187 (12) ◽  
Author(s):  
Yuanchao Liu ◽  
Jie Pan ◽  
Zhenlin Hu ◽  
Yanwu Chu ◽  
Muhammad Shehzad Khan ◽  
...  

2018 ◽  
Vol 98 (4) ◽  
Author(s):  
Dileep Mampallil ◽  
Meenakshi Sharma ◽  
Ashwini Sen ◽  
Shubham Sinha

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 802 ◽  
Author(s):  
Ting-Hui Chen ◽  
Bing-Yau Huang ◽  
Chie-Tong Kuo

In this paper, a wavelength tunable colloidal-crystal laser with monodispersed silica particles was demonstrated. Silica particles were synthesized through the modified Stöber process and self-assembled into the colloidal photonic-crystal structure, which was then used to form the optic cavity of a wavelength tunable laser device. Due to Bragg’s diffraction of the colloidal photonic-crystal and the coffee ring effect, the forbidden energy gap of light varied with different lattice sizes at different positions of the colloidal photonic-crystal. When the pumping pulsed laser irradiated on the gain medium of the sample, the fluorescence was restricted and enhanced by the colloidal photonic-crystal. Lasing emission with a single peak occurred when the energy of the pumping laser exceeded the threshold energy. The threshold energy and the full-width at half-maximum (FWHM) of the proposed laser were 7.63 µJ/pulse and 2.88 nm, respectively. Moreover, the lasing wavelength of the colloidal photonic-crystal laser could be tuned from 604 nm to 594 nm, corresponding to the various positions in the sample due to the coffee ring effect.


Sign in / Sign up

Export Citation Format

Share Document