Wavelength demodulated Bragg grating fiber optic sensing systems for addressing smart structure critical issues

1992 ◽  
Vol 1 (1) ◽  
pp. 36-44 ◽  
Author(s):  
R M Measures ◽  
S Melle ◽  
K Liu
2019 ◽  
Vol 22 (15) ◽  
pp. 3341-3351
Author(s):  
Qingqing Zhang ◽  
Tongfei Sun ◽  
Jing Wang ◽  
Qianlong Liu

Deflection of the main arch of arch bridges is one of the main indices for supporting the alignment after construction and evaluating the structural performance. The existing sensing technology and analysis method for deflection monitoring have developed, but it is still difficult to monitor the deflection of the main arch of a long-span arch bridge with great height difference between measuring points. On the contrary, in recent years, with the outstanding advantages of fiber optic sensing technologies, a long-gauge fiber Bragg grating sensing technology has been used in structural health monitoring due to its characteristics, including reflecting the macro and micro information and being connected into network. For these reasons, the long-gauge fiber Bragg grating sensing technology is proposed to develop a method to monitor the deflection of the main arch of arch bridges. A curvature load method for deflection distribution estimation using strain measurements is proposed. It deduces the expression of the complex relation between the strain and the deformation on the main arch element and then separates the coupled strain on the element through the specific sensor layout. A series of simulation tests of the deck arch bridge, half-through bridge, and through arch bridge was conducted. It is concluded that the proposed method can not only be applied to these long-span arch bridges but also can identify the static and dynamic deflections of the main arch effectively.


2019 ◽  
Vol 56 (3) ◽  
pp. 279-295
Author(s):  
Cui Zhang ◽  
Xinglin Tong ◽  
Chengwei Deng ◽  
Hongqiao Wen ◽  
Di Huang ◽  
...  

Polyurethane foam is a kind of polymer composite material. The foaming turgidity and reaction temperature of polyurethane foam are closely related to its mechanical properties. According to our present knowledge, this study is the first time that fiber optic sensing technology has been applied to monitor the dynamics change in the foaming turgidity and reaction temperature of polyurethane foam during its preparation. The effects on the foaming expansion force, contractile force, and reaction temperature are studied through changing proportion of water among the ingredients of the polyurethane foam. The results have shown that the fiber optic Bragg grating wavelength varies due to the reaction temperature and foaming power. In the reaction process, the foaming expansion force can make the maximum wavelength change of fiber optic Bragg grating 1–3.5 nm, equivalent to 1000–3541 micro strain. And the highest temperature of the reaction was 42.6°C. The wavelength shifts of the fiber optic Bragg gratings were closely related to the reaction temperature and foaming power. The results show that fiber optic sensing technology can be used for the online kinetics monitoring of the reaction process of polyurethane foam plastics. The data obtained from the fiber optic Bragg grating could be used for the design and performance prediction of new polyurethane foam materials.


1994 ◽  
Author(s):  
Raymond M. Measures ◽  
A. Tino Alavie ◽  
Robert Maaskant ◽  
Shang Yuan Huang ◽  
Michel LeBlanc

Author(s):  
Daniele Inaudi ◽  
Riccardo Belli ◽  
Roberto Walder

Distributed fiber optic sensing offers the ability to measure temperatures and strain at thousands of points along a single fiber. This is particularly interesting for the monitoring of pipelines, where it allows the detection and localization of leakages of much smaller volume than conventional mass balance techniques. Fiber optic sensing systems are used to detect and localize leakages in liquid, gas and multiphase pipelines, allowing the monitoring of hundreds of kilometers of pipeline with a single instrument and the localization of the leakage with a precision of 1 or 2 meters. This contribution presents recent testing results on controlled field trials. The tests demonstrate that it is possible to reliably detect oil leakages of the order of 10 liters to 1’000 liters per hour, corresponding to 0.01% to 0.1% of the pipeline flow. Tests were performed with small temperature differences between liquid and ground. The detection time was between 1 minute and 90 minutes. All simulated leakages were detected and localized to better than 2m accuracy. The paper describes the main parameters that affect the response time and detection volume, including the relative position of the leak to the sensing cable, temperature contrast and instrument performance. We also briefly report on relevant full-scale installations for the permanent monitoring of oil, brine and natural gas pipelines.


Sign in / Sign up

Export Citation Format

Share Document