Design of a smart functionally graded thermopiezoelectric composite structure

2001 ◽  
Vol 10 (2) ◽  
pp. 189-193 ◽  
Author(s):  
B L Wang ◽  
N Noda
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Poornesh ◽  
Shreeranga Bhat ◽  
E.V. Gijo ◽  
Pavana Kumara Bellairu

PurposeThis article aims to study the tensile properties of a functionally graded composite structure with Al–18wt%Si alloy as the matrix material and silicon carbide (SiC) particles as the reinforcing element. More specifically, the study's primary objective is to optimize the composition of the material elements using a robust statistical approach.Design/methodology/approachIn this research, the composite material is fabricated using a combination of stir casting and the centrifugal casting technique. Moreover, the test specimen required to study the tensile strength are prepared according to the ASTM (American Society for Testing and Materials) standards. Eventually, optimal composition to maximize the tensile property of the material is determined using the mixture design approach.FindingsThe investigation results imply that the addition of the SiC plays a crucial role in increasing the tensile strength of the composite. The optical microstructural images of the composite show the adequate distribution of the reinforcing particles with the matrix. The proposed regression model shows better predictability of tensile strength. In addition, the methodology aids in optimizing the mixture component values to maximize the tensile strength of the produced functionally graded composite structure.Originality/valueLittle work has been reported so far where a hypereutectic Al–Si alloy is considered the matrix material to produce the composite structure. The article attempts to make a composite structure by using a combination of stir casting and centrifugal casting. Furthermore, it employs the mixture design to optimize the composition and predict the model of the study, which is one of a kind in the field of material science.


2018 ◽  
Vol 29 (18) ◽  
pp. 3582-3597 ◽  
Author(s):  
Manoj Kumar Singh ◽  
Sanjeev A Sahu ◽  
Abhinav Singhal ◽  
Soniya Chaudhary

In mathematical physics, the Wentzel–Kramers–Brillouin approximation or Wentzel–Kramers–Brillouin method is a technique for finding approximate solutions to linear differential equations with spatially varying coefficients. An attempt has been made to approximate the velocity of surface seismic wave in a piezo-composite structure. In particular, this article studies the dispersion behaviour of Love-type seismic waves in functionally graded piezoelectric material layer bonded between initially stressed piezoelectric layer and pre-stressed piezoelectric half-space. In functionally graded piezoelectric material stratum, theoretical derivations are obtained by the Wentzel–Kramers–Brillouin method where variations in material gradient are taken exponentially. In the upper layer and lower half-space, the displacement components are obtained by employing separation of variables method. Dispersion equations are obtained for both electrically open and short cases. Numerical example and graphical manifestation have been provided to illustrate the effect of influencing parameters on the phase velocity of considered surface wave. Obtained relation has been deduced to some existing results, as particular case of this study. Variation in cut-off frequency and group velocity against the wave number are shown graphically. This study provides a theoretical basis and practical utilization for the development and construction of surface acoustics wave devices.


2021 ◽  
Vol 42 (4) ◽  
pp. 2073-2086
Author(s):  
Mingsheng Jin ◽  
Dongjie Zhu ◽  
Liming Wang ◽  
Senbin Ye ◽  
Zhixin Li ◽  
...  

2019 ◽  
Vol 11 (09) ◽  
pp. 1950083 ◽  
Author(s):  
Sanjeev Anand Sahu ◽  
Juhi Baroi ◽  
A. Chattopadhyay ◽  
Sonal Nirwal

Propagation behavior of horizontally polarized shear waves (SH-waves) in a piezo-composite structure is discussed, using the Wentzel–Kramers–Brillouin (WKB) method. The considered model is made by combining the Functionally Graded Piezoelectric Material (FGPM) layer and piezoelectric orthotropic substrate. The linear form spring model is considered to delineate the imperfection of interface. Moreover, the material properties of FGPM layer are varying linearly along the thickness direction. Dispersion relation is obtained for both electrically open and short cases. Numerical example and graphical representation have been provided to illustrate the effect of different parameters on the phase velocity of SH-waves. As a special case, dispersion relation has been obtained when the boundary is perfect. Results are compared for different orthotropic materials to add more specific observations. Finally, the outcome of this study is validated by matching it with classical Love wave result. Observations will be helpful in optimization of Love wave sensors and Surface Acoustic Wave (SAW) devices.


2018 ◽  
Vol 29 (9) ◽  
pp. 1928-1940 ◽  
Author(s):  
Abhishek Kumar Singh ◽  
Amrita Das ◽  
Anusree Ray ◽  
Amares Chattopadhyay

Green’s function plays an important role in solving the problems concerning point action or impulse responsible for wave motions in materials. Prime objective of the this article is to investigate the propagation behaviour of Love-type wave influenced by a point source in a composite structure comprising a functionally graded piezoelectric material layer lying over a functionally graded fibre-reinforced material half-space. Green’s function technique is adopted in order to obtain the dispersion equation, which is further reduced to the classical Love wave equation as a particular case of the problem. The effect of increasing thickness of functionally graded piezoelectric material layer on the circular frequency and wave number is unravelled and depicted graphically. Moreover, influence of heterogeneity, piezoelectricity and dielectric constant associated with functionally graded piezoelectric material layer and effect of heterogeneity parameter and corresponding magnification factor concerned with functional gradedness of functionally graded fibre-reinforced material half-space have been reported through numerical computation and graphical delineation. For sake of computation, numerical data of PZT-5H ceramics for the functionally graded piezoelectric material layer and carbon-fibre epoxy-resin for functionally graded fibre-reinforced material half-space have been considered. Comparative study is performed to elucidate the effect of presence and absence of reinforcement in functionally graded half-space on the phase velocity of Love-type wave propagating in composite structure.


2019 ◽  
Vol 30 (18-19) ◽  
pp. 2789-2807 ◽  
Author(s):  
Pulkit Kumar ◽  
Moumita Mahanty ◽  
Amares Chattopadhyay ◽  
Abhishek Kumar Singh

The primary objective of this article is to investigate the behaviour of horizontally polarized shear (SH) wave propagation in piezoelectric composite structure consisting of functionally graded piezoelectric material layer imperfectly bonded to functionally graded porous piezoelectric material half-space. The linear form of functional gradedness varying continuously along with depth is considered in both functionally graded piezoelectric material layer and functionally graded porous piezoelectric material half-space. The interface of the composite structure is considered to be damaged mechanically and/or electrically. Wentzel–Kramers–Brillouin asymptotic approach is adopted to solve the coupled electromechanical field differential equations of both functionally graded piezoelectric material layer and functionally graded porous piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relations of propagating SH-wave for both electrically short and electrically open conditions, which further reduced to the pre-established and classical results as special case of the problem. The effect of various affecting parameters, namely, functional gradedness, wave number, mechanical/electrical imperfection parameters in the presence and absence of porosity on the phase velocity of SH-wave, has been reported through numerical computation and graphical demonstration. In addition, the variation of the coupled electromechanical factor with dimensionless wave number and cut-off frequency with different modes of propagation of wave for electrically short and electrically open cases has also been discussed.


Sign in / Sign up

Export Citation Format

Share Document