Propagation of Love-type wave in functionally graded pre-stressed magneto-visco-elastic fiber-reinforced composite structure

Author(s):  
Pooja Singh ◽  
Amares Chattopadhyay ◽  
Abhishek Kumar Singh
Author(s):  
Mohamed Gaith ◽  
Cevdet Akgoz

A new procedure based on constructing orthonormal tensor basis using the form-invariant expressions which can easily be extended to any tensor of rank n. A new decomposition, which is not in literature, of the stress tensor is presented. An innovational general form and more explicit physical property of the symmetric fourth rank elastic tensors is presented. The new method allows to measure the stiffness and piezoelectricity in the elastic fiber reinforced composite and piezoelectric ceramic materials, respecively, using a proposed norm concept on the crystal scale. This method will allow to investigate the effects of fiber orientaion, number of plies, material properties of matrix and fibers, and degree of anisotropy on the stiffness of the structure. The results are compared with those available in the literature for semiconductor compounds, piezoelectric ceramics and fiber reinforced composite materials.


2016 ◽  
Vol 27 (20) ◽  
pp. 2774-2794 ◽  
Author(s):  
Satyajit Panda

For improved flexibility and conformability of piezoelectric fiber–reinforced composite actuator, it is reconstructed in a recent study by the use of short piezoelectric fibers (short piezoelectric fiber–reinforced composite) instead of continuous fibers (continuous piezoelectric fiber–reinforced composite). This modification facilitates its application in short piezoelectric fiber–reinforced composite layer form instead of continuous piezoelectric fiber–reinforced composite patch form particularly in case of host structures with highly curved boundary surfaces. But the corresponding change in actuation capability is a major issue for potential application of short piezoelectric fiber–reinforced composite that is studied in this work through the control of vibration of a functionally graded circular cylindrical shell under thermal environment. First, an arrangement of continuous piezoelectric fiber–reinforced composite actuator patches over the host shell surface is presented with an objective of controlling all modes of vibration. Next, the use of short piezoelectric fiber–reinforced composite actuator layer for similar control activity is demonstrated through an arrangement of electrode patches over its surfaces. Subsequently, an electric potential function is assumed for the consideration of electrode patches and a geometrically nonlinear coupled thermo-electro-mechanical incremental finite element model of the harmonically excited overall functionally graded shell is developed. The numerical results reveal actuation capability of short piezoelectric fiber–reinforced composite actuator layer with reference to that of the existing continuous piezoelectric fiber–reinforced composite/monolithic piezoelectric actuator patches. The effects of temperature, size of electrode patches, properties of piezoelectric fiber–reinforced composite, and functionally graded properties on the control activity of short piezoelectric fiber–reinforced composite/continuous piezoelectric fiber–reinforced composite actuator are also presented.


2016 ◽  
Vol 1133 ◽  
pp. 121-125
Author(s):  
Hanif Muqsit ◽  
Ali Nawaz Mengal ◽  
Saravanan Karupannan

In this study, the focus was on the optimum design of laminate stacking sequences (LSS) of basalt fiber reinforced composite (BFRP) structure. Eleven rectangular composite panels with different stacking sequences and fiber orientations were analyzed. A three-point flexural test according to ASTM D790 was carried out in ANSYS to simulate the basalt fiber reinforced composite layup flexural strength. From the results, it was found that the composite structure layup of [0/0/45/0/0]s has the highest strength among all samples.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 191-200
Author(s):  
B. CHEN ◽  
Q. YUAN ◽  
J. H. FAN ◽  
J. G. WANG ◽  
J. LUO

The observation of scanning electron microscope (SEM) showed that Tumblebug elytra consist of almost parallel upper and lower cuticles. Both of which are a kind of chitin-fiber-reinforced composite. There is a kind of chitin-fiber-reinforced composite pillars between the upper and lower cuticles, which support and connect the upper and lower cuticles uprightly. More careful observation showed that the chitin fibers in the pillars smoothly extend to the upper and lower composite cuticles forming a kind of fiber-continuous pillar-board composite (FCPBC) structure. Based on the observation, two kinds of pillar-board composite structure specimens, respective with continuous and discontinuous glass fibers, were fabricated with molding and felting processes. The rupture strengths of the two kinds of the specimens were tested and compared. It showed that the rupture strength of the specimens of the FCPBC structure is markedly larger than that of the specimens of the fiber-discontinuous pillar-board composite (FDPBC) structure. At last, the experimental result was analyzed for illumining the mechanism of the FCPBC structure in the enhancement of the strength.


Sign in / Sign up

Export Citation Format

Share Document