Characterization of Polarized Shear Waves in FGPM Composite Structure with Imperfect Boundary: WKB Method

2019 ◽  
Vol 11 (09) ◽  
pp. 1950083 ◽  
Author(s):  
Sanjeev Anand Sahu ◽  
Juhi Baroi ◽  
A. Chattopadhyay ◽  
Sonal Nirwal

Propagation behavior of horizontally polarized shear waves (SH-waves) in a piezo-composite structure is discussed, using the Wentzel–Kramers–Brillouin (WKB) method. The considered model is made by combining the Functionally Graded Piezoelectric Material (FGPM) layer and piezoelectric orthotropic substrate. The linear form spring model is considered to delineate the imperfection of interface. Moreover, the material properties of FGPM layer are varying linearly along the thickness direction. Dispersion relation is obtained for both electrically open and short cases. Numerical example and graphical representation have been provided to illustrate the effect of different parameters on the phase velocity of SH-waves. As a special case, dispersion relation has been obtained when the boundary is perfect. Results are compared for different orthotropic materials to add more specific observations. Finally, the outcome of this study is validated by matching it with classical Love wave result. Observations will be helpful in optimization of Love wave sensors and Surface Acoustic Wave (SAW) devices.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Poornesh ◽  
Shreeranga Bhat ◽  
E.V. Gijo ◽  
Pavana Kumara Bellairu

PurposeThis article aims to study the tensile properties of a functionally graded composite structure with Al–18wt%Si alloy as the matrix material and silicon carbide (SiC) particles as the reinforcing element. More specifically, the study's primary objective is to optimize the composition of the material elements using a robust statistical approach.Design/methodology/approachIn this research, the composite material is fabricated using a combination of stir casting and the centrifugal casting technique. Moreover, the test specimen required to study the tensile strength are prepared according to the ASTM (American Society for Testing and Materials) standards. Eventually, optimal composition to maximize the tensile property of the material is determined using the mixture design approach.FindingsThe investigation results imply that the addition of the SiC plays a crucial role in increasing the tensile strength of the composite. The optical microstructural images of the composite show the adequate distribution of the reinforcing particles with the matrix. The proposed regression model shows better predictability of tensile strength. In addition, the methodology aids in optimizing the mixture component values to maximize the tensile strength of the produced functionally graded composite structure.Originality/valueLittle work has been reported so far where a hypereutectic Al–Si alloy is considered the matrix material to produce the composite structure. The article attempts to make a composite structure by using a combination of stir casting and centrifugal casting. Furthermore, it employs the mixture design to optimize the composition and predict the model of the study, which is one of a kind in the field of material science.


2013 ◽  
Vol 325-326 ◽  
pp. 252-255
Author(s):  
Li Gang Zhang ◽  
Hong Zhu ◽  
Hong Biao Xie ◽  
Jian Wang

This work addresses the dispersion of Love wave in an isotropic homogeneous elastic half-space covered with a functionally graded layer. First, the general dispersion equations are given. Then, the approximation analytical solutions of displacement, stress and the general dispersion relations of Love wave in both media are derived by the WKBJ approximation method. The solutions are checked against numerical calculations taking an example of functionally graded layer with exponentially varying shear modulus and density along the thickness direction. The dispersion curves obtained show that a cut-off frequency arises in the lowest order vibration model.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zhen Qu ◽  
Xiaoqin Shen ◽  
Xiaoshan Cao

Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH) waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM) and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.


2018 ◽  
Vol 29 (18) ◽  
pp. 3582-3597 ◽  
Author(s):  
Manoj Kumar Singh ◽  
Sanjeev A Sahu ◽  
Abhinav Singhal ◽  
Soniya Chaudhary

In mathematical physics, the Wentzel–Kramers–Brillouin approximation or Wentzel–Kramers–Brillouin method is a technique for finding approximate solutions to linear differential equations with spatially varying coefficients. An attempt has been made to approximate the velocity of surface seismic wave in a piezo-composite structure. In particular, this article studies the dispersion behaviour of Love-type seismic waves in functionally graded piezoelectric material layer bonded between initially stressed piezoelectric layer and pre-stressed piezoelectric half-space. In functionally graded piezoelectric material stratum, theoretical derivations are obtained by the Wentzel–Kramers–Brillouin method where variations in material gradient are taken exponentially. In the upper layer and lower half-space, the displacement components are obtained by employing separation of variables method. Dispersion equations are obtained for both electrically open and short cases. Numerical example and graphical manifestation have been provided to illustrate the effect of influencing parameters on the phase velocity of considered surface wave. Obtained relation has been deduced to some existing results, as particular case of this study. Variation in cut-off frequency and group velocity against the wave number are shown graphically. This study provides a theoretical basis and practical utilization for the development and construction of surface acoustics wave devices.


Sign in / Sign up

Export Citation Format

Share Document