Toughening response of a crack-tip surrounded by a local elastic gradient

2014 ◽  
Vol 23 (3) ◽  
pp. 035009 ◽  
Author(s):  
Mohammad H Malakooti ◽  
Henry A Sodano
Keyword(s):  
Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 406
Author(s):  
Siqian Zhang ◽  
Jing Liu ◽  
Haoyu Zhang ◽  
Jie Sun ◽  
Lijia Chen

Natural materials are generally damage adaptive through their multilevel architectures, with the characteristics of compositional and mechanical gradients. This study demonstrated that the desired elastic gradient can be in-situ stress-induced in a titanium alloy, and that the alloy showed extreme fatigue-damage tolerance through the crack deflection and branch due to the formation of a three-dimensional elastically graded zone surrounding the crack tip. This looks like a perceptive and adaptive mechanism to retard the crack: the higher stress concentrated at the tip and the larger elastic gradient to be induced. The retardation is so strong that a gradient nano-grained layer with a thickness of less than 2 μm formed at the crack tip due to the highly localized and accumulated plasticity. Furthermore, the ultrafine-grained alloy with the nano-sized precipitation also exhibited good damage tolerance.


Author(s):  
Mohammad H. Malakooti ◽  
Henry A. Sodano

The healing process exhibited by biological structures has inspired the creation of engineered materials capable of mimicking this behavior, providing adaption to impeding crack propagation and subsequently healing it. Recently, a new approach to self-healing was devised in which a sensing network was combined with shape memory polymers (SMPs) to allow the controlled response of the material to damage. The system was designed such that in the presence of a crack the polymer locally modified its modulus to toughen the damaged region and arrest crack growth. This process is followed by the shape memory response, closing the crack and healing the system. This paper will study the mechanics of the toughening portion of this self-healing system and specifically develop models to predict the stress intensity factor of a crack tip in a nonhomogeneous inclusion. The models will be formulated using finite element analysis (FEA) and a single inclusion model based on Eshelby’s equivalent theory with the elastic gradient defined by a point source thermal load. It will be shown that as the temperature of the crack tip passes the glass transition temperature of the polymer, the stress intensity factor at crack tip decreases to 95% of the original material stress intensity factor. This is due to the formed elastic gradient and deflection of the stress concentration away from the crack tip into the bulk polymer.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


Sign in / Sign up

Export Citation Format

Share Document