Storm-Time Evolution of Energetic Electron Pitch Angle Distributions by Wave-Particle Interaction

2008 ◽  
Vol 10 (1) ◽  
pp. 27-29 ◽  
Author(s):  
Xiao Fuliang ◽  
He Huiyong ◽  
Zhou Qinghua ◽  
Wu Guanhong ◽  
Shi Xianghua
2020 ◽  
Author(s):  
Lun Xie ◽  
Ying Xiong ◽  
Suiyan Fu ◽  
Zuyin Pu

<p>Electron pitch angle distribution (PAD) is a critical parameter in the study of the dynamics of the radiation belt electrons. It is well known that solar wind pressure has an impact on the PAD of the geomagnetically trapped electrons. Using the Van Allen Probes' data, we find that the MeV electron PAD at 4.5<L*<5.5 became narrowing (PAD is mainly concentrated at 90 degree) for over three days during a prolonged enhancement of the solar wind number density on November 27-30, 2015. During that period, the EMIC waves are observed by Van Allen Probe-A and ground stations on the afternoon and dusk MLTs at L>4. Meanwile, the precipitations of tens of keV protons and MeV electrons are observed by POES satellites. Additionally, there is a growing dip in electron phase space density at L*~5, indicating a local loss caused by the wave-particle interaction. The narrowing of the electron PAD is energy-dependent and the PAD is more anisotropic for electrons with higher energy, which is consistent with the wave-particle interaction with the EMIC waves. Furthermore, previous studies have shown that high solar wind density can lead to a hot and dense plasma sheet. The inward penetration of a dense plasma-sheet down to 4 Re has been confirmed by THEMIS spacecraft. We suggest that the overlap of the plasma sheet and the plasmasphere provide a favorable condition for exciting EMIC waves and the loss of small pitch angle electrons by EMIC waves can lead to the electron PAD narrowing. </p><div> </div>


2000 ◽  
Vol 7 (3/4) ◽  
pp. 185-190 ◽  
Author(s):  
C. Mazelle ◽  
D. Le Quéau ◽  
K. Meziane

Abstract. Well-defined ring-like backstreaming ion distributions have been recently reported from observations made by the 3DP/PESA-High analyzer onboard the WIND spacecraft in the Earth's foreshock at large distances from the bow shock, which suggests a local production mechanism. The maximum phase space density for these distributions remains localized at a nearly constant pitch-angle value for a large number of gyroperiods while the shape of the distribution remains very steady. These distributions are also observed in association with quasi-monochromatic low frequency (~ 50 mHz) waves with substantial amplitude (δB/B>0.2). The analysis of the magnetic field data has shown that the waves are propagating parallel to the background field in the right-hand mode. Parallel ion beams are also often observed in the same region before the observation of both the ring-like distributions and the waves. The waves appear in cyclotron resonance with the ion parallel beams. We investigate first the possibility that the ion beams could provide the free energy source for driving an ion/ion instability responsible for the ULF wave occurrence. For that, we solve the wave dispersion relation with the observed parameters. Second, we show that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered on a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions are in good quantitative agreement with the observations


2013 ◽  
Vol 31 (3) ◽  
pp. 503-512 ◽  
Author(s):  
Y. Katoh ◽  
M. Kitahara ◽  
H. Kojima ◽  
Y. Omura ◽  
S. Kasahara ◽  
...  

Abstract. In the upcoming JAXA/ERG satellite mission, Wave Particle Interaction Analyzer (WPIA) will be installed as an onboard software function. We study the statistical significance of the WPIA for measurement of the energy transfer process between energetic electrons and whistler-mode chorus emissions in the Earth's inner magnetosphere. The WPIA measures a relative phase angle between the wave vector E and velocity vector v of each electron and computes their inner product W, where W is the time variation of the kinetic energy of energetic electrons interacting with plasma waves. We evaluate the feasibility by applying the WPIA analysis to the simulation results of whistler-mode chorus generation. We compute W using both a wave electric field vector observed at a fixed point in the simulation system and a velocity vector of each energetic electron passing through this point. By summing up Wi of an individual particle i to give Wint, we obtain significant values of Wint as expected from the evolution of chorus emissions in the simulation result. We can discuss the efficiency of the energy exchange through wave-particle interactions by selecting the range of the kinetic energy and pitch angle of the electrons used in the computation of Wint. The statistical significance of the obtained Wint is evaluated by calculating the standard deviation σW of Wint. In the results of the analysis, positive or negative Wint is obtained at the different regions of velocity phase space, while at the specific regions the obtained Wint values are significantly greater than σW, indicating efficient wave-particle interactions. The present study demonstrates the feasibility of using the WPIA, which will be on board the upcoming ERG satellite, for direct measurement of wave-particle interactions.


2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Mitsuru Hikishima ◽  
Hirotsugu Kojima ◽  
Yuto Katoh ◽  
Yoshiya Kasahara ◽  
Satoshi Kasahara ◽  
...  

2000 ◽  
Vol 85 (15) ◽  
pp. 3177-3180 ◽  
Author(s):  
R. F. Heeter ◽  
A. F. Fasoli ◽  
S. E. Sharapov

2018 ◽  
Vol 45 (7) ◽  
pp. 2911-2917 ◽  
Author(s):  
J. F. Carbary ◽  
D. G. Mitchell ◽  
P. Kollmann ◽  
N. Krupp ◽  
E. Roussos ◽  
...  

1998 ◽  
Vol 16 (1) ◽  
pp. 25-33 ◽  
Author(s):  
E. E. Titova ◽  
T. A. Yahnina ◽  
A. G. Yahnin ◽  
B. B. Gvozdevsky ◽  
A. A. Lyubchich ◽  
...  

Abstract. Specific type of energetic electron precipitation accompanied by a sharp increase in trapped energetic electron flux are found in the data obtained from low-altitude NOAA satellites. These strongly localized variations of the trapped and precipitated energetic electron flux have been observed in the evening sector near the plasmapause during recovery phase of magnetic storms. Statistical characteristics of these structures as well as the results of comparison with proton precipitation are described. We demonstrate the spatial coincidence of localized electron precipitation with cold plasma gradient and whistler wave intensification measured on board the DE-1 and Aureol-3 satellites. A simultaneous localized sharp increase in both trapped and precipitating electron flux could be a result of significant pitch-angle isotropization of drifting electrons due to their interaction via cyclotron instability with the region of sharp increase in background plasma density.Key words. Ionosphere (particle precipitation; wave-particle interaction) Magnetospheric Physics (plasmasphere)


Sign in / Sign up

Export Citation Format

Share Document