wave particle interaction
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
De-Sheng Han

Diffuse aurora is generated by the precipitation of hot electrons from the central plasma sheet due to wave-particle interaction. Near magnetic local noon (MLN), the diffuse aurora was often observed in structured forms, such as in stripy or patchy. In the magnetosphere, when the hot electrons meet with a cold plasma structure, the threshold of resonance energy for the electrons in the cold plasma region can be lowered, leading to more electrons being involved in the wave-particle interaction and being scattered into the loss cone. As a result, stronger diffuse aurora can be produced in the correspondent region. Based on this mechanism, the structured dayside diffuse auroras have been suggested to correspond to the cold plasma structures in the dayside outer magnetosphere. This brief review focuses on showing that 1) the stripy diffuse auroras observed near MLN are specifically informative, 2) there are two types of diffuse aurora near MLN, which may correspond to cold plasmas originating from inside and outside the magnetosphere, respectively, and 3) we can study the inside-outside coupling by using the interaction between diffuse and discrete auroras observed near MLN.


2021 ◽  
Vol 28 (9) ◽  
pp. 092110
Author(s):  
Damien F. G. Minenna ◽  
Khalil Aliane ◽  
Yves Elskens ◽  
Alexandre Poyé ◽  
Frédéric André ◽  
...  

2020 ◽  
Author(s):  
Sascha Janser ◽  
Joachim Saur ◽  
Jamey Szalay ◽  
George Clark ◽  
Ali Sulaiman

<p>Observations by the JUNO spacecraft revealed energetic, bidirectional particle populations with broadband energy distributions in the high-latitude region of Jupiter. These measurements indicate that an acceleration mechanism of stochastic nature plays a dominant role for the generation of the intense main auroral oval. In our current work, we investigate the acceleration of energetic electrons and protons recently observed by JUNO in the Io flux tube wake near Jupiter. We try to infer on the relevant physical acceleration process by considering a resonant as well as a non-resonant wave-particle interaction mechanism, both based on Alfven waves. We focus on necessary temporal scales to drive these mechanisms efficiently and also on the released wave energy by means of the transported Poynting flux along the flux tube.</p>


2020 ◽  
Author(s):  
Jiansen He ◽  
Chuanpeng Hou ◽  
Xingyu Zhu ◽  
Qiaowen Luo ◽  
Daniel Verscharen ◽  
...  

<p>Wave-particle interaction plays a critical role in producing the newborn waves/turbulence in the foreshock region in front of supercritical shock, which is prevalent in the heliosphere. It has been a long-lasting goal to catch and witness the excitation and growth of waves/turbulence by identifying the ongoing process of wave-particle interaction. This goal cannot be fulfilled until the arrival of the MMS’s era, during which we can simultaneously measure the electromagnetic fields and particle phase space densities with the unprecedented data quality. By surveying the data of burst mode, we are lucky to find some good examples illustrating the clear signals of wave activities in front of the shock. The active waves are diagnosed to be right-handed cyclotron waves, being highly circularly polarized and rotating right-handed about the background magnetic field vector. The waves are large amplitude with dB being greatly dominant over B0, or in other words, almost the whole magnetic field vector is involved in the circular rotation. Furthermore, we investigate the growth evolution of the large-amplitude cyclotron waves by calculating the spectrum of dJ.dE and its ratio to the electromagnetic energy spectrum. As far as we know, it is the first time to provide the spectrum of growth rate from in-situ measurements. Interestingly, we find that the contribution to the growth rate spectrum mainly comes from dJ<sub>e,perp</sub>·dE<sub>perp</sub> rather than dJ<sub>e,para</sub>·dE<sub>para</sub> or d<strong>J</strong><sub>i</sub>·d<strong>E</strong>. Although the eigen mode to couple the oscillating electromagnetic field is the electron bulk oscillation, the ultimate free energy to make the eigen mode unstable comes from the ion beams, which are reflected from the shock. The dynamics of 3D phase space densities for both ion and electron species are also studied in detail together with the fluctuating electromagnetic field, demonstrating the ongoing energy conversion during the wave-particle process.</p><p> </p>


2020 ◽  
Author(s):  
Sascha Janser ◽  
Joachim Saur ◽  
Jamey Szalay ◽  
George Clark

<div> <div> <div> <p>Observations by the JUNO spacecraft revealed energetic, bidirectional particle populations with broadband energy distributions in the high-latitude region of Jupiter. These measurements indicate that an acceleration mechanism of stochastic nature plays a dominant role for the generation of the intense main auroral oval. In our current work, we investigate the heating of an energetic upward proton population recently observed by JUNO in the Io flux tube wake near Jupiter. We try to infer on the relevant physical acceleration process by considering a resonant as well as a non-resonant wave-particle interaction mechanism, both based on Alfven waves. We focus on necessary temporal scales to drive these mechanisms efficiently and also on the released wave energy by means of the transported Poynting flux along the flux tube.</p> </div> </div> </div>


2020 ◽  
Author(s):  
Lun Xie ◽  
Ying Xiong ◽  
Suiyan Fu ◽  
Zuyin Pu

<p>Electron pitch angle distribution (PAD) is a critical parameter in the study of the dynamics of the radiation belt electrons. It is well known that solar wind pressure has an impact on the PAD of the geomagnetically trapped electrons. Using the Van Allen Probes' data, we find that the MeV electron PAD at 4.5<L*<5.5 became narrowing (PAD is mainly concentrated at 90 degree) for over three days during a prolonged enhancement of the solar wind number density on November 27-30, 2015. During that period, the EMIC waves are observed by Van Allen Probe-A and ground stations on the afternoon and dusk MLTs at L>4. Meanwile, the precipitations of tens of keV protons and MeV electrons are observed by POES satellites. Additionally, there is a growing dip in electron phase space density at L*~5, indicating a local loss caused by the wave-particle interaction. The narrowing of the electron PAD is energy-dependent and the PAD is more anisotropic for electrons with higher energy, which is consistent with the wave-particle interaction with the EMIC waves. Furthermore, previous studies have shown that high solar wind density can lead to a hot and dense plasma sheet. The inward penetration of a dense plasma-sheet down to 4 Re has been confirmed by THEMIS spacecraft. We suggest that the overlap of the plasma sheet and the plasmasphere provide a favorable condition for exciting EMIC waves and the loss of small pitch angle electrons by EMIC waves can lead to the electron PAD narrowing. </p><div> </div>


2019 ◽  
Vol 489 (3) ◽  
pp. 3059-3065
Author(s):  
S M Khorashadizadeh ◽  
Sh Abbasi Rostami ◽  
A R Niknam ◽  
S Vasheghani Farahani ◽  
R Fallah

ABSTRACTThe aim of this study is to highlight the temporal evolution of the longitudinal wave instability due to the interaction between a rotating electron beam and the magnetoactive plasma region in space plasma structures. The plasma structure which could be either in the solar atmosphere or any active plasma region in space is considered weakly turbulent, where the quasi-linear theory is implemented to enable analytic insight on the wave–particle interaction in the course of the event. It is found that in a weakly turbulent plasma, quasi-linear saturation of the longitudinal wave is accompanied by a significant alteration in the distribution function in the resonant region. In case of a pure electrostatic wave, the wave amplitude experiences elevation due to the energy transfer from the plasma particles. This causes flattening of the bump on tail (BOT) in the electron distribution function. If the gradient of the distribution function is positive, the chance that the beam would excite the wave is probable. In such a situation a plateau on the distribution function (∂f/∂v ≈ 0) is formed that will stop the diffusion of beam particles in the velocity space. Evolution of the electron distribution function experiences a decreases of the instability of the longitudinal wave. It is deduced that the growth rate of the wave instability is inversely proportional to the wave energy. Regarding the Sun, in addition to creating micro-turbulence due to wave–particle interaction, as the wave elevates to higher altitudes it enters a saturated energy state before releasing energy that may be a candidate for the generation of radio bursts.


Sign in / Sign up

Export Citation Format

Share Document