scholarly journals Geodesic motion of neutral particles around a Kerr–Newman black hole

2017 ◽  
Vol 34 (23) ◽  
pp. 235008 ◽  
Author(s):  
Chen-Yu Liu ◽  
Da-Shin Lee ◽  
Chi-Yong Lin
1987 ◽  
Vol 35 (4) ◽  
pp. 1171-1175 ◽  
Author(s):  
K. D. Krori ◽  
Madhumita Barua

2007 ◽  
Vol 46 (12) ◽  
pp. 3067-3071 ◽  
Author(s):  
DeYou Chen ◽  
ShuZheng Yang

2021 ◽  
Author(s):  
Wen-Xiang Chen

Abstract In this article, a new variable y is added here to expand the results of the above article.We use the properties of the Laurent series and the Cauchy integral. When y is greater than a certain limit, the effective potential of the equation does not have a pole, then there is no potential well outside the event horizon, when p 2(a 2 + Q2)/r2 + < ω < mΩH + qΦH,so the Kerr-Newman black hole is superradiantly stable at that time.


2021 ◽  
Author(s):  
Wen-Xiang Chen

Abstract In this article, a new variable y is added here to expand the results of the above article.We use the properties of the Laurent series and the Cauchy integral. When y is greater than a certain limit, the effective potential of the equation does not have a pole, then there is no potential well outside the event horizon, when p 2(a 2 + Q2)/r2 + < ω < mΩH + qΦH,so the Kerr-Newman black hole is superradiantly stable at that time.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Monimala Mondal ◽  
Farook Rahaman ◽  
Ksh. Newton Singh

AbstractGeodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics ($$Q_o > Q_{\sigma }$$ Q o > Q σ ). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period $$(T_{photon}< T_{ISCO})$$ ( T photon < T ISCO ) among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.


2008 ◽  
Vol 25 (3) ◽  
pp. 858-861 ◽  
Author(s):  
Jing Ji-Liang ◽  
Ding Chi-Kun
Keyword(s):  

2019 ◽  
Vol 97 (12) ◽  
pp. 1309-1316 ◽  
Author(s):  
Carlos Castro Perelman

Starting with a brief description of Born’s reciprocal relativity theory (BRRT), based on a maximal proper force, maximal speed of light, and inertial and non-inertial observers, we derive the exact thermal relativistic corrections to the Schwarzschild, Reissner–Nordstrom, and Kerr–Newman black hole entropies and provide a detailed analysis of the many novel applications and consequences to the physics of black holes, quantum gravity, minimal area, minimal mass, Yang–Mills mass gap, information paradox, arrow of time, dark matter, and dark energy. We finish by outlining our proposal towards a space–time–matter unification program where matter can be converted into spacetime quanta and vice versa.


Sign in / Sign up

Export Citation Format

Share Document