Thermal relativity, corrections to black hole entropy, Born’s reciprocal relativity theory, and quantum gravity

2019 ◽  
Vol 97 (12) ◽  
pp. 1309-1316 ◽  
Author(s):  
Carlos Castro Perelman

Starting with a brief description of Born’s reciprocal relativity theory (BRRT), based on a maximal proper force, maximal speed of light, and inertial and non-inertial observers, we derive the exact thermal relativistic corrections to the Schwarzschild, Reissner–Nordstrom, and Kerr–Newman black hole entropies and provide a detailed analysis of the many novel applications and consequences to the physics of black holes, quantum gravity, minimal area, minimal mass, Yang–Mills mass gap, information paradox, arrow of time, dark matter, and dark energy. We finish by outlining our proposal towards a space–time–matter unification program where matter can be converted into spacetime quanta and vice versa.

2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2010 ◽  
Vol 88 (3) ◽  
pp. 223-225
Author(s):  
J. Manuel García-Islas

We show that counting different configurations that give rise to black-hole entropy in loop quantum gravity is related to partitions in number theory.


2019 ◽  
Vol 35 (10) ◽  
pp. 2050061
Author(s):  
Z. Luo ◽  
X. G. Lan

It is suggested that the dispersion relation might be corrected at higher energy scales and lead to the deformed Hamilton–Jacobi equation. In this paper, we use the correction to investigate the fermion tunneling radiation for Demianski–Newman black hole spacetime, and the result shows that the corresponding Hawking temperature and the black hole entropy are related to the angular parameters of the black hole coordinates.


1996 ◽  
Vol 11 (16) ◽  
pp. 2823-2834
Author(s):  
SERGEI D. ODINTSOV ◽  
YONGSUNG YOON

Using the Wilsonian procedure (renormalization group improvement) we discuss the finite quantum corrections to black hole entropy in renormalizable theories. In this way, the Wilsonian black hole entropy is found for GUT’s (of asymptotically free form, in particular) and for the effective theory for the conformal factor aiming to describe quantum gravity in the infrared region. The off-critical regime (where the coupling constants are running) for the effective theory for the conformal factor in quantum gravity (with or without torsion) is explicitly constructed. The corresponding renormalization group equations for the effective couplings are found using the Schwinger-DeWitt technique for the calculation of the divergences of the fourth order operator.


2007 ◽  
Vol 68 ◽  
pp. 012031 ◽  
Author(s):  
Alejandro Corichi ◽  
Jacobo Díaz-Polo ◽  
Enrique Fernández-Borja

2009 ◽  
Vol 24 (30) ◽  
pp. 5579-5585 ◽  
Author(s):  
OZAY GURTUG ◽  
MUSTAFA HALILSOY

By gauging an Abelian electromagnetic solution through a non-Abelian transformation and in accordance with a theorem proved long time ago, we construct a simple class of colliding Einstein–Yang–Mills plane waves. The solution is isometric to the Wu–Yang charged Kerr–Newman black hole and shares much of the properties satisfied by colliding Einstein–Maxwell plane waves. In the linear polarization limit with unit degenerate charge it reduces to the Bell–Szekeres solution for colliding em shock waves.


Sign in / Sign up

Export Citation Format

Share Document