scholarly journals Deflection of charged massive particles by a four-dimensional charged Einstein-Gauss-Bonnet black hole

Author(s):  
Zonghai Li ◽  
Yujie Duan ◽  
Junji Jia

Abstract Based on the Jacobi metric method, this paper studies the deflection of a charged massive particle by a novel four-dimensional charged Einstein-Gauss-Bonnet black hole. We focus on the weak field approximation and consider the deflection angle with finite distance effects. To this end, we use a geometric and topological method, which is to apply the Gauss-Bonnet theorem to the Jacobi space to calculate the deflection angle. We find that the deflection angle contains a pure gravitational contribution $\delta_g$, a pure electrostatic $\delta_c$ and a gravitational-electrostatic coupling term $\delta_{gc}$. We find that the deflection angle increases(decreases) if the Gauss-Bonnet coupling constant $\alpha$ is negative(positive). Furthermore, the effects of the BH charge, the particle charge-to-mass ratio and the particle velocity on the deflection angle are analyzed.

Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Wajiha Javed ◽  
Jameela Abbas ◽  
Yashmitha Kumaran ◽  
Ali Övgün

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Hasan El Moumni ◽  
Karima Masmar ◽  
Ali Övgün

In this paper, we study the gravitational lensing by some black hole classes within the non-linear electrodynamics in weak field limits. First, we calculate an optical geometry of the non-linear electrodynamics black hole then we use the Gauss-Bonnet theorem for finding deflection angle in weak field limits. The effect of non-linear electrodynamics on the deflection angle in leading order terms is studied. Furthermore, we discuss the effects of the plasma medium on the weak deflection angle.


Author(s):  
Wajiha Javed ◽  
Ali Hamza ◽  
Ali Övgün

In this work, we investigate the weak deflection angle of light from exact black hole within the non-linear electrodynamics. First we calculate the Gaussian optical curvature using the optical spacetime geometry. With the help of modern geometrical way popularized by Gibbons and Werner, we examine the deflection angle of light from exact black hole. For this desire, we determine the optical Gaussian curvature and execute the Gauss-Bonnet theorem on optical metric and calculate the leading terms of deflection angle in the weak limit approximation. Furthermore, we likewise study the plasma medium's effect on weak gravitational lensing by exact black hole. Hence we expose the effect of the non-linear electrodynamics on the deflection angle in the weak gravitational field.


Author(s):  
Wajiha Javed ◽  
Rimsha Babar ◽  
Ali Övgün

In this paper, we argue that one can calculate the weak deflection angle in the background of Einstein-Maxwell-Dilaton-Axion black hole using the Gauss-Bonnet theorem. To support this, the optical geometry of the black hole with the Gibbons-Werner method are used to obtain the deflection angle of light in the weak field limits. Moreover, we investigate the effect of a plasma medium on deflection of light for a given black hole. Because of dilaton and axion are one of the candidate of the dark matter, it can give us a hint on observation of dark matter which is supported the black hole. Hence we demonstrate the observational viability via showing the effect of the dark matter on the weak deflection angle.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 6
Author(s):  
Carlos A. Benavides-Gallego ◽  
Ahmadjon-Abdujabbarov Abdujabbarov

In this work, we obtain the deflection angle for a boosted Kerr black hole in the weak field approximation using the optics in a curved spacetime developed by J. L. Synge in 1960. We study the behavior of light in the presence of plasma by considering different distributions: uniform plasma, singular isothermal sphere, non-singular isothermal gas sphere, and plasma in a galaxy cluster. We found that the dragging of the inertial system along with the boosted parameter Λ affect the value of the deflection angle. As an application, we studied the magnification for both uniform and singular isothermal distributions.


Author(s):  
Wajiha Javed ◽  
Ali Hamza ◽  
Ali Övgün

In this article, we calculate the deflection angle of tidal charged black hole (TCBH) in weak field limits. First we obtain the Gaussian optical curvature and then apply the Gauss-Bonnet theorem on it. With the help of Gibbons-Werner method, we are able to calculate the light's deflection angle by TCBH in weak field limits. After calculating the deflection angle of light, we check the graphical behavior of TCBH. Moreover, we further find the light's deflection angle in the presence of plasma medium and also check the graphical behavior in the presence of plasma medium. Moreover, we investigate the shadow of TCBH.For calculating the shadow, we first find the null geodesics around the TCBH and then find its shadow radius. We also obtain TCBH's shadow in the plasma medium. Hence, we discuss the shadow of the TCBH using the $M87^{*}$ parameters announced by the Event Horizon Telescope.


Author(s):  
Wajiha Javed ◽  
Ali Hamza ◽  
Ali Övgün

In this work, we investigate the weak deflection angle of light from exact black hole within the non-linear electrodynamics. First we calculate the Gaussian optical curvature using the optical spacetime geometry. With the help of modern geometrical way popularized by Gibbons and Werner, we examine the deflection angle of light from exact black hole. For this desire, we determine the optical Gaussian curvature and execute the Gauss-Bonnet theorem on optical metric and calculate the leading term of deflection angle in the week limit approximation. Furthermore, we likewise study the plasma medium's effect on weak gravitational lensing by exact black hole. Hence we expose the effect of the non-linear electrodynamics on the deflection angle in the weak gravitational field.


2020 ◽  
Vol 17 (12) ◽  
pp. 2050182
Author(s):  
Wajiha Javed ◽  
Muhammad Bilal Khadim ◽  
Ali Övgün

In this paper, we analyze the weak gravitational lensing in the context of Einstein-nonlinear-Maxwell–Yukawa black hole. To this desire, we derive the deflection angle of light by Einstein-nonlinear-Maxwell–Yukawa black hole using the Gibbons and Werner method. For this purpose, we obtain the Gaussian curvature and apply the Gauss–Bonnet theorem to find the deflection angle of Einstein-nonlinear-Maxwell–Yukawa black hole in weak field limits. Moreover, we derive the deflection angle of light in the influence of plasma medium. We also analyze the graphical behavior of deflection angle by Einstein-nonlinear-Maxwell–Yukawa black hole in the presence of plasma as well as non-plasma medium.


Sign in / Sign up

Export Citation Format

Share Document