Radon protection in apartments by wireless radon activity concentration-controlled ventilation

Author(s):  
Jörg Dehnert ◽  
Diana Altendorf ◽  
Ralf Trabitzsch ◽  
Hannes Grünewald ◽  
Ralph Geisenhainer ◽  
...  
2014 ◽  
Vol 160 (1-3) ◽  
pp. 222-225 ◽  
Author(s):  
M. M llerova ◽  
K. Holy ◽  
M. Bulko

2020 ◽  
Vol 192 (1) ◽  
pp. 56-60
Author(s):  
Charles K Rotich ◽  
Nadir O Hashim ◽  
Margaret W Chege ◽  
Catherine Nyambura

Abstract The activity concentration of radon in underground water of Bureti sub-county was measured using liquid scintillating counter device. The average radon activity concentration in all the water samples was 12.41 Bql−1. The maximum and minimum activity concentrations of radon were 22.5 and 4.57 Bql−1, respectively. In total, 53% of the total samples analysed had radon concentration levels above the US Environmental Protection Agency-recommended limit of 11.1 Bql−1. The annual dose received by an individual as a result of waterborne radon was determined according to the United Nations Scientific Committee on the Effect of Atomic Radiation reports and was found to be 33.23 𝜇Svy−1. All the samples recorded a value <100 𝜇Svy−1 recommended by the World Health Organization and the European Union council.


2020 ◽  
Author(s):  
Pawel Jodlowski ◽  
Jakub Nowak ◽  
Jan Macuda

<p>The radiological risk in natural gas industry is mostly connected with radon (Rn-222) and its progeny: Po-218, Pb-214, Bi-214, Po-214 and Pb-210. The radon activity concentration in natural gas transported by gas pipelines varies in a wide range from dozens of Bq/m<sup>3</sup> to several thousand Bq/m<sup>3</sup> and mainly depends on the proximity of mines and geological structure of the deposit from which natural gas is extracted and transported. The radon progeny are ion metals, which are easily adsorbed on aerosols and deposited on the inner surfaces of gas pipe and other gas processing equipment such as scrubbers, compressors, reflux pumps, control valves and product lines creating thin radioactive films. Additionally, radon progeny together with aerosols (in contrast to radon) are retained on filters. In the aftermath of successive radioactive decay of short-lived radon progeny, long-lived Pb-210 is accumulated on filters.</p><p>             The paper presents the study of the Rn-222, Pb-210 connected with the transport of natural gas by the gas pipeline network in Poland. In the scope of the study the measurements of activity concentration of radon (Rn-222) in the gas samples (with alpha scintillation cells), radiolead Pb-210 in spent filter cartridges and dust samples collected from the gas pipeline network (with gamma-ray spectrometry) were performed.</p><p>             The results show that the Rn-222 activity concentration in natural gas varies from the detection limit of the applied method (30 Bq/m<sup>3</sup>) to around 1400 Bq/m<sup>3</sup>. Generally, the Rn-222 concentration in natural gas samples fluctuate around the mean radon concentration in the air of dwellings in Poland. The elevated radon activity concentrations in natural gas of several hundreds of Bq/m<sup>3</sup> and more are observed at locations where the gas directly comes from local gas mines or where there is a blend of the national gas with imported one. Relatively low radon concentration in imported natural gas is connected with the fact that this gas was imported from abroad. Therefore, the time elapsed from the gas extraction to the collection of samples was relatively long. In consequence, the concentration of Rn-222 in the gas significantly decreased due to radon decay (3.4 days). Additionally, the temporal variability (daily and weekly) of the radon activity concentration in the natural gas were assessed. The results show radon concentrations does not statistically change in daily or weekly time scale.</p><p>             The Pb-210 activity concentration in dust ("black-powder") from gas filters and spent filter cartridges is high and varies from 500 to 17000 Bq/kg and from 200 to 2900 Bq/kg respectively.</p>


2019 ◽  
Vol 49 (4) ◽  
pp. 391-402
Author(s):  
Iveta Smetanová ◽  
Andrej Mojzeš ◽  
František Marko ◽  
Kamil Fekete ◽  
Kristián Csicsay

Abstract Indoor radon survey in Sološnica, Vydrník and Zázrivá villages has been performed within the framework of the project “Multidisciplinary research of geophysical and structural parameters, and environmental impacts of faults of the Western Carpathians”. Integration measurement of 222Rn activity concentration has been carried out using RamaRn detectors in houses, offices, schools and kindergartens. Indoor radon activity in the summer monitoring period (June–August 2018) varied from values under the detection limit of 55 Bq/m3 to 480 Bq/m3. In 94% of rooms the radon activity below 200 Bq/m3 was found. The results have been examined in respect of the most used building material and presence or absence of a cellar underneath the room. Indoor radon higher than 300 Bq/m3 was measured only in rooms in direct contact with the subsoil.


Nukleonika ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 45-49
Author(s):  
Petr P. S. Otahal ◽  
Ivo Burian

AbstractThe radon issue has been known worldwide for dozens of years. Many scientific (ICRP Publication No. 137), technical (ICRU Report No. 88), and legislative (Council Directive 2013/59/EURATOM (EU-BSS)) documents have been published in the last decade. More and more attention is being paid to precise quantification to determine the concentration and consequent effects of various pollutants on human health worldwide. The quality of measurement and the variety of measurement techniques increase the need to unify measurement procedures and metrology continuity. Countries around the world are beginning to unify metrological procedures for determining different quantities based on international recommendations and standards. Not only for these reasons, it became more actual a need for more accurate radon activity concentration measurement and radon metrology unification. This paper summarizes the main remarks and technical aspects to the historical development of radon metrology.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ema Sinanović ◽  
Feriz Adrović ◽  
Amira Kasumović ◽  
Amela Kasić

Man is continuously exposed to ionizing radiation because of the presence of naturally occurring radioactive materials (NORM) in the environment. Various technological processes of processing and using of materials that contain natural radionuclides generate materials of enhanced natural radioactivity (TENORM). The largest contribution to irradiance with natural sources of ionizing radiation is the exposure of the population to indoor radon. This gas originates from the radioactive decay of 226Ra and 224Ra that are present in the soil under houses and building materials. Depending on the type of building materials, indoor exposure to radon at dwellings and workplaces can be over a thousand times greater than in outdoor space. In Bosnia and Herzegovina, no valid and comprehensive radiological studies on the building materials have been performed that would guarantee for their dosimetric safety use for installation in residential and industrial buildings, highways, as well as their application for other purposes. The quantification of the radon levels that comes from building materials is a necessary and very important part of the global protection of the population from ionizing radiation. This paper presents the first results of a study on the radon activity concentrations in building materials used in Bosnia and Herzegovina. Measurements were performedwith a professional Alpha GUARD system. The mean values of the activity concentration of the exhaled radon of investigated building materials varied from 10 Bqm-3 to 101 Bqm-3, radon exhalation rate values ranged from 77.0 mBqm-2h-1 to 777.7 mBqm-2h-1. Gamma dose rate was in the range 57–112 nSv h−1.


Author(s):  
Anita Csordás ◽  
Katalin Zsuzsanna Szabó ◽  
Zoltán Sas ◽  
Erika Kocsis ◽  
Tibor Kovács

AbstractAnnual average indoor radon activity concentration was studied in 88 Hungarian kindergartens in 76 towns of 10 different counties. Annual average indoor radon activity concentration in the kindergartens was 61 Bq m− 3, maximum was 160 Bq m− 3. In the kindergartens the seasonal variation of radon is not so strong like in dwellings, because of the permanent ventilation and the closed period during the summer break.


Author(s):  
Goretti Arias-Ferreiro ◽  
A. Otero-Pazos ◽  
Ana Ares-Pernas ◽  
I. Fernández-Ibáñez ◽  
B. A. Rodríguez-Gómez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document