Effects of cross-sessional area and aspect ratio coupled with orientation on mechanical properties and deformation behavior of Cu nanowires

2021 ◽  
Author(s):  
Hui Cao ◽  
Wenke Chen ◽  
Zhiyuan Rui ◽  
Changfeng Yan

Abstract Metal nanomaterials exhibit excellent mechanical properties compared with corresponding bulk materials and have potential applications in various areas. Despite a number of studies of the size effect on Cu nanowires mechanical properties with square cross-sectional, investigations of them in rectangular cross-sectional with various sizes at constant volume are rare, and lack of multifactor coupling effect on mechanical properties and quantitative investigation. In this work, the dependence of mechanical properties and deformation mechanisms of Cu nanowires/nanoplates under tension on cross-sessional area, aspect ratio of cross-sectional coupled with orientation were investigated using molecular dynamics simulations and the semi-empirical expressions related to mechanical properties were proposed. The simulation results show that the Young’s modulus and the yield stress sharply increase with the aspect ratio except for the <110>{110}{001} Cu nanowires/nanoplates at the same cross-sectional area. And the Young’s modulus increases while the yield stress decreases with the cross-sectional area of Cu nanowires. However, both of them increase with the cross-sectional area of Cu nanoplates. Besides, the Young’s modulus increases with the cross-sectional area at all the orientations. The yield stress shows a mildly downward trend except for the <111> Cu nanowires with increased cross-sectional area. For the Cu nanowires with a small cross-sectional area, the surface force increases with the aspect ratio. In contrast, it decreases with the aspect ratio increase at a large cross-sectional area. At the cross-sectional area of 13.068 nm2, the surface force decreases with the aspect ratio of the <110> Cu nanowires while it increases at other orientations. The surface force is a linearly decreasing function of the cross-sectional area at different orientations. Quantitative studies show that Young’s modulus and yield stress to the aspect ratio of the Cu nanowires satisfy exponent relationship. In addition, the main deformation mechanism of Cu nanowires is the nucleation and propagation of partial dislocations while it is the twinning-dominated reorientation for Cu nanoplates.

2005 ◽  
Vol 117 (45) ◽  
pp. 7598-7601 ◽  
Author(s):  
Lior Itzhaki ◽  
Eli Altus ◽  
Harold Basch ◽  
Shmaryahu Hoz

2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2013 ◽  
Vol 736 ◽  
pp. 195-215 ◽  
Author(s):  
A. Siviglia ◽  
M. Toffolon

AbstractWe study the conditions under which discontinuous mechanical properties of a collapsible tube can induce transcritical flows, i.e. the transition through the critical state where the speed index (analogous to the Mach or the Froude numbers for compressible and free surface flows, respectively) is one. Such a critical transition may strongly modify the flow properties, cause a significant reduction in the cross-sectional area of the tube, and limit the flow. General relationships are obtained for a short segment using a one-dimensional model under steady flow conditions. Marginal curves delimiting the transcritical regions are identified in terms of the speed index and the cross-sectional area ratio. Since there are many examples of such flows in physiology and medicine, we also analyse the specific case of prosthesis (graft or stent) implantation in blood vessels. We then compute transcritical conditions for the case of stiffness and reference area variations, considering a collapsible tube characterized by physiological parameters representative of both arteries and veins. The results suggest that variations in mechanical properties may induce transcritical flow in veins but is unrealistic in arteries.


2021 ◽  
Vol 18 (177) ◽  
Author(s):  
Stuart H. Sater ◽  
Austin M. Sass ◽  
Akari Seiner ◽  
Gabryel Conley Natividad ◽  
Dev Shrestha ◽  
...  

Spaceflight is known to cause ophthalmic changes in a condition known as spaceflight-associated neuro-ocular syndrome (SANS). It is hypothesized that SANS is caused by cephalad fluid shifts and potentially mild elevation of intracranial pressure (ICP) in microgravity. Head-down tilt (HDT) studies are a ground-based spaceflight analogue to create cephalad fluid shifts. Here, we developed non-invasive magnetic resonance imaging (MRI)-based techniques to quantify ophthalmic structural changes under acute 15° HDT. We specifically quantified: (i) change in optic nerve sheath (ONS) and optic nerve (ON) cross-sectional area, (ii) change in ON deviation, an indicator of ON tortuosity, (iii) change in vitreous chamber depth, and (iv) an estimated ONS Young's modulus. Under acute HDT, ONS cross-sectional area increased by 4.04 mm 2 (95% CI 2.88–5.21 mm 2 , p < 0. 000), while ON cross-sectional area remained nearly unchanged (95% CI −0.12 to 0.43 mm 2 , p = 0.271). ON deviation increased under HDT by 0.20 mm (95% CI 0.08–0.33 mm, p = 0.002). Vitreous chamber depth decreased under HDT by −0.11 mm (95% CI −0.21 to −0.03 mm, p = 0.009). ONS Young's modulus was estimated to be 85.0 kPa. We observed a significant effect of sex and BMI on ONS parameters, of interest since they are known risk factors for idiopathic intracranial hypertension. The tools developed herein will be useful for future analyses of ON changes in various conditions.


Sign in / Sign up

Export Citation Format

Share Document