The chiral coating on an achiral nanostructure by the secondary effect in focused ion beam induced deposition

2021 ◽  
Author(s):  
Chen Fang ◽  
Qing Chai ◽  
Ye Chen ◽  
Yan Xing ◽  
Zai-fa Zhou

Abstract Optical metamaterials are widely used in electromagnetic wave modulation due to their sub-wavelength feature sizes. In this paper, a method to plate an achiral nanopillar array with chiral coating by the secondary effect in focused ion beam induced deposition is proposed. Guided by the pattern defined in a bitmap with variable residence time, the beam scan strategy suppresses the interaction between adjacent nanostructures. A uniform chiral coating is formed on the target nanostructure without affecting the adjacent nanostructure, under carefully selected beam parameters and the rotation angle of the sample stage. Energy Dispersive X-Ray Spectroscopy results show that the chiral film has high purity metal, which enables the generation of localized surface plasmon resonances and causes the circular dichroism under circularly polarized light illumination. Finally, the tailorable circular dichroism spectrum of the coated array is verified by the Finite Difference Time Domain method.

Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. 1465-1468 ◽  
Author(s):  
Steven Daly ◽  
Frédéric Rosu ◽  
Valérie Gabelica

DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.


1994 ◽  
Vol 48 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Lei Geng ◽  
Linda B. McGown

A major difficulty in fluorescence-detected circular dichroism (FDCD) and lifetime-resolved fluorescence-detected circular dichroism (LRFDCD) is the generation of equal excitation intensities of left circularly polarized light (LCPL) and right circularly polarized light (RCPL). In the presence of unequal intensities, the observed FDCD signal of an optically active sample, or the resolved FDCD signals of a multicomponent system in the case of LRFDCD, will be contaminated by a factor that is the ratio of the two unequal intensities. For optically inactive samples, a sample-independent, artifactual, nonzero signal of constant magnitude is observed. A general scheme is presented for the correction of these inaccuracies caused by unequal intensities of LCPL and RCPL. Large differences between LCPL and RCPL excitation intensities were artificially introduced in steady-state FDCD measurements, and the artifact was accurately corrected by the scheme. Corrected results for the different experimental approaches that have been described for LRFDCD showed similarly good accuracy. In a related consideration, inclusion of the total absorbance and absorption circular dichroism of the sample in the calculation of the FDCD signal is shown to be essential for samples with high absorbances.


2013 ◽  
Vol 59 ◽  
pp. 359-382 ◽  
Author(s):  
Andrew J. Thomson ◽  
Laurence D. Barron

Philip J. Stephens was a theoretical chemist who brought to fruition two new forms of optical spectroscopy, using circularly polarized light, for the determination of electronic structure and molecular stereochemistry. The first was magnetic circular dichroism (MCD), the wavelength dependence of the differential absorption of left and right circularly polarized light induced by a magnetic field applied parallel to the light beam. Stephens established a methodology for extracting from MCD spectra the angular momentum characteristics of ground and excited electronic states and demonstrated applications to the assignment of the optical spectra of coordination complexes of transition metals and to metalloproteins. In the second half of his career Stephens led the field of vibrational circular dichroism (VCD), the measurement of the natural circular dichroism (CD) arising from the vibrational transitions of chiral molecules. He developed instrumental techniques to measure this weak dichroism over a wide frequency range with high sensitivity. Subsequently he developed a quantum-mechanical method that yielded reliable calculations of VCD spectra by using density functional theory. Thus absolute configurations of all the chiral centres in an organic molecule are readily established. Given the increasing importance of enantiomerically pure chiral drugs, VCD has found widespread application in the pharmaceutical industry. Philip had not only a deep understanding of chemical theory but also a thorough grasp of experiments. His lectures on theoretical topics were models of clarity. He was also an accomplished pianist in demand, when a student at Oxford University, as an accompanist and for chamber concerts.


2021 ◽  
Vol 11 (7) ◽  
pp. 2989
Author(s):  
Sangtae Jeon ◽  
Soo Jin Kim

Circular dichroism (CD) is a physical property observed in chiral molecules by inducing the difference of absorption between left- and right-handed circularly polarized light (CPL). Circular dichroism spectroscopy is widely used in the field of chemistry and biology to distinguish the enantiomers, which typically show either positive or severe side effects in biological applications depending on the molecular structures’ chirality. To effectively detect the chirality of molecules, diverse designs of nanostructured platforms are proposed based on optical resonances that can enhance the optical chirality and amplify the signal of circular dichroism. However, the underlying physics between the optical chirality and the resonance in a nanostructure is largely unexplored, and thus designing rules for optimal chiral detection is still elusive. Here, we carry out an in-depth analysis of chiral enhancement (C enhancement) in nanostructured surfaces to find the relationship between optical resonances and chirality. Based on the relations, we optimize the nanostructured metasurface to induce effective chiral detection of enantiomers for diverse conditions of molecule distribution. We believe that the proposed designing rules and physics pave the important pathway to enhance the optical chirality for effective circular dichroism spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document