Effect of the Electric Field Profile on the Accuracy of E-FISH Measurements in Ionization Waves

Author(s):  
Tat Loon Chng ◽  
David Z. Pai ◽  
Olivier Guaitella ◽  
Svetlana M Starikovskaia ◽  
Anne Bourdon

Abstract Electric field induced second harmonic (E-FISH) generation has emerged as a versatile tool for measuring absolute electric field strengths in time-varying, non-equilibrium plasmas and gas discharges. Yet recent work has demonstrated that the E-FISH signal, when produced with tightly focused laser beams, exhibits a strong dependence on both the length and shape of the applied electric field profile (along the axis of laser beam propagation). In this paper, we examine the effect of this dependence more meaningfully, by predicting what an E-FISH experiment would measure in a plasma, using 2D axisymmetric numerical fluid simulations as the true value. A pin-plane nanosecond discharge at atmospheric pressure is adopted as the test configuration, and the electric field evolution during the propagation of the ionization wave (IW) is specifically analyzed. We find that the various phases of this evolution (before and up to the front arrival, immediately behind the front and after the connection to the grounded plane) are quite accurately described by three unique electric field profile shapes, each of which produces a different response in the E-FISH signal. As a result, the accuracy of an E-FISH measurement is generally predicted to be comparable in the first and third phases of the IW evolution, and significantly poorer in the second (intermediate) phase. Fortunately, even though the absolute error in the field strength at certain time instants could be large, the overall shape of the field evolution curve is relatively well captured by E-FISH. Guided by the simulation results, we propose a procedure for estimating the error in the initial phase of the IW development, based on the presumption that the starting field profile mirrors that of its corresponding Laplacian conditions before evolving further. We expect that this approach may be readily generalized and applicable to other IW problems or phenomena, thus extending the utility of the E-FISH diagnostic.

1972 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
G.A. Swartz ◽  
A. Gonzalez ◽  
A. Dreeben

2013 ◽  
Vol 31 (2) ◽  
pp. 251-261 ◽  
Author(s):  
J. De Keyser ◽  
M. Echim

Abstract. Strong localized high-altitude auroral electric fields, such as those observed by Cluster, are often associated with magnetospheric interfaces. The type of high-altitude electric field profile (monopolar, bipolar, or more complicated) depends on the properties of the plasmas on either side of the interface, as well as on the total electric potential difference across the structure. The present paper explores the role of this cross-field electric potential difference in the situation where the interface is a tangential discontinuity. A self-consistent Vlasov description is used to determine the equilibrium configuration for different values of the transverse potential difference. A major observation is that there exist limits to the potential difference, beyond which no equilibrium configuration of the interface can be sustained. It is further demonstrated how the plasma densities and temperatures affect the type of electric field profile in the transition, with monopolar electric fields appearing primarily when the temperature contrast is large. These findings strongly support the observed association of monopolar fields with the plasma sheet boundary. The role of shear flow tangent to the interface is also examined.


1991 ◽  
Vol 23 (2-4) ◽  
pp. 273-281
Author(s):  
R. Könenkamp ◽  
S. Muramatsu ◽  
H. Itoh ◽  
S. Matsubara ◽  
T. Shimada

2011 ◽  
Vol 20 (03) ◽  
pp. 487-496
Author(s):  
ANAND V. SAMPATH ◽  
R. W. ENCK ◽  
H. SHEN ◽  
M. WRABACK ◽  
Q. ZHOU ◽  
...  

A III-Nitride/ SiC separate absorption and multiplication avalanche photodiode (SAM-APD) offers a novel approach for fabricating high gain photodetectors with tunable absorption over a wide spectrum from the visible to deep ulltraviolet. However, unlike conventional heterojunction SAM APDs, the formation of polarization-induced charge at the hetero-interface arising from spontaneous and piezoelectric polarization can dramatically affect the performance of this detector. In this paper we report on the role of this interface charge on the performance of GaN / SiC SAM APDs. Simulations of the electric field profile within this device structure while biased near avalanche breakdown indicate that the density of positive interface charge may be sufficient to confine the electric field within the SiC multiplication region with negligible punch-through into the GaN absorption region, a distribution that is likely undesirable for efficient collection of photo-generated holes due to the presence of defects at the hetero-interface. Simulations further show that the incorporation of a p -type doped interface charge control layer at the hetero-interface can modify the total density of charge at the interface and allow for the tailoring of the electric field profile within this device. Experimental results are provided that correlate well with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document