scholarly journals Optical chirality in gyrotropic media: symmetry approach

2017 ◽  
Vol 19 (6) ◽  
pp. 063021 ◽  
Author(s):  
Igor Proskurin ◽  
Alexander S Ovchinnikov ◽  
Pavel Nosov ◽  
Jun-ichiro Kishine
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.


2021 ◽  
Vol 1730 (1) ◽  
pp. 012022
Author(s):  
Kairat Myrzakulov ◽  
Duman Kenzhalin ◽  
Nurgissa Myrzakulov

2021 ◽  
Vol 11 (15) ◽  
pp. 6742
Author(s):  
Hans Arwin ◽  
Stefan Schoeche ◽  
James Hilfiker ◽  
Mattias Hartveit ◽  
Kenneth Järrendahl ◽  
...  

Optical chirality, in terms of circular birefringence and circular dichroism, is described by its electromagnetic and magnetoelectric material tensors, and the corresponding optical activity contributes to the Mueller matrix. Here, spectroscopic ellipsometry in the spectral range 210–1690 nm is used to address chiral phenomena by measuring Mueller matrices in transmission. Three approaches to determine chirality parameters are discussed. In the first approach, applicable in the absence of linear polarization effects, circular birefringence and circular dichroism are evaluated directly from elements of a Mueller matrix. In the second method, differential decomposition is employed, which allows for the unique separation of chirality parameters from linear anisotropic parameters as well as from depolarization provided that the sample is homogeneous along the optical path. Finally, electromagnetic modeling using the Tellegen constitutive relations is presented. The last method also allows structural effects to be included. The three methods to quantify optical chirality are demonstrated for selected materials, including sugar solutions, α-quartz, liquid crystals, beetle cuticle, and films of cellulose nanocrystals.


2008 ◽  
Vol 51 (3) ◽  
pp. 314-320
Author(s):  
Yu. G. Pavlenko ◽  
A. V. Seliverstov

Sign in / Sign up

Export Citation Format

Share Document