scholarly journals Temporal correlations of sunlight may assist photoprotection in bacterial photosynthesis

2020 ◽  
Vol 22 (7) ◽  
pp. 073042
Author(s):  
Adriana M De Mendoza ◽  
Felipe Caycedo-Soler ◽  
Susana F Huelga ◽  
Martin B Plenio
2020 ◽  
Vol 14 (2) ◽  
pp. 167-175
Author(s):  
Li Zhang ◽  
Volker Schwieger

AbstractThe investigations on low-cost single frequency GNSS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox GNSS receivers combined with low-cost antennas and self-constructed L1-optimized choke rings can reach an accuracy which almost meets the requirements of geodetic applications (see Zhang and Schwieger [25]). However, the quality (accuracy and reliability) of low-cost GNSS receiver data should still be improved, particularly in environments with obstructions. The multipath effects are a major error source for the short baselines. The ground plate or the choke ring ground plane can reduce the multipath signals from the horizontal reflector (e. g. ground). However, the shieldings cannot reduce the multipath signals from the vertical reflectors (e. g. walls).Because multipath effects are spatially and temporally correlated, an algorithm is developed for reducing the multipath effect by considering the spatial correlations of the adjoined stations (see Zhang and Schwieger [24]). In this paper, an algorithm based on the temporal correlations will be introduced. The developed algorithm is based on the periodic behavior of the estimated coordinates and not on carrier phase raw data, which is easy to use. Because, for the users, coordinates are more accessible than the raw data. The multipath effect can cause periodic oscillations but the periods change over time. Besides this, the multipath effect’s influence on the coordinates is a mixture of different multipath signals from different satellites and different reflectors. These two properties will be used to reduce the multipath effect. The algorithm runs in two steps and iteratively. Test measurements were carried out in a multipath intensive environment; the accuracies of the measurements are improved by about 50 % and the results can be delivered in near-real-time (in ca. 30 minutes), therefore the algorithm is suitable for structural health monitoring applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 702
Author(s):  
Mustafa Kemal Emil ◽  
Mohamed Sultan ◽  
Khaled Alakhras ◽  
Guzalay Sataer ◽  
Sabreen Gozi ◽  
...  

Over the past few decades the country of Qatar has been one of the fastest growing economies in the Middle East; it has witnessed a rapid increase in its population, growth of its urban centers, and development of its natural resources. These anthropogenic activities compounded with natural forcings (e.g., climate change) will most likely introduce environmental effects that should be assessed. In this manuscript, we identify and assess one of these effects, namely, ground deformation over the entire country of Qatar. We use the Small Baseline Subset (SBAS) InSAR time series approach in conjunction with ALOS Palsar-1 (January 2007 to March 2011) and Sentinel-1 (March 2017 to December 2019) synthetic aperture radar (SAR) datasets to assess ground deformation and conduct spatial and temporal correlations between the observed deformation with relevant datasets to identify the controlling factors. The findings indicate: (1) the deformation products revealed areas of subsidence and uplift with high vertical velocities of up to 35 mm/yr; (2) the deformation rates were consistent with those extracted from the continuously operating reference GPS stations of Qatar; (3) many inland and coastal sabkhas (salt flats) showed evidence for uplift (up to 35 mm/yr) due to the continuous evaporation of the saline waters within the sabkhas and the deposition of the evaporites in the surficial and near-surficial sabkha sediments; (4) the increased precipitation during Sentinel-1 period compared to the ALOS Palsar-1 period led to a rise in groundwater levels and an increase in the areas occupied by surface water within the sabkhas, which in turn increased the rate of deposition of the evaporitic sediments; (5) high subsidence rates (up to 14 mm/yr) were detected over landfills and dumpsites, caused by mechanical compaction and biochemical processes; and (6) the deformation rates over areas surrounding known sinkhole locations were low (+/−2 mm/yr). We suggest that this study can pave the way to similar countrywide studies over the remaining Arabian Peninsula countries and to the development of a ground motion monitoring system for the entire Arabian Peninsula.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Costantino Budroni ◽  
Giuseppe Vitagliano ◽  
Mischa P. Woods

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A101-A101
Author(s):  
Samadrita Chowdhury ◽  
TzuAn Song ◽  
Richa Saxena ◽  
Shaun Purcell ◽  
Joyita Dutta

Abstract Introduction Polysomnography (PSG) is considered the gold standard for sleep staging but is labor-intensive and expensive. Wrist wearables are an alternative to PSG because of their small form factor and continuous monitoring capability. In this work, we present a scheme to perform such automated sleep staging via deep learning in the MESA cohort validated against PSG. This scheme makes use of actigraphic activity counts and two coarse heart rate measures (only mean and standard deviation for 30-s sleep epochs) to perform multi-class sleep staging. Our method outperforms existing techniques in three-stage classification (i.e., wake, NREM, and REM) and is feasible for four-stage classification (i.e., wake, light, deep, and REM). Methods Our technique uses a combined convolutional neural network coupled and sequence-to-sequence network architecture to appropriate the temporal correlations in sleep toward classification. Supervised training with PSG stage labels for each sleep epoch as the target was performed. We used data from MESA participants randomly assigned to non-overlapping training (N=608) and validation (N=200) cohorts. The under-representation of deep sleep in the data leads to class imbalance which diminishes deep sleep prediction accuracy. To specifically address the class imbalance, we use a novel loss function that is minimized in the network training phase. Results Our network leads to accuracies of 78.66% and 72.46% for three-class and four-class sleep staging respectively. Our three-stage classifier is especially accurate at measuring NREM sleep time (predicted: 4.98 ± 1.26 hrs. vs. actual: 5.08 ± 0.98 hrs. from PSG). Similarly, our four-stage classifier leads to highly accurate estimates of light sleep time (predicted: 4.33 ± 1.20 hrs. vs. actual: 4.46 ± 1.04 hrs. from PSG) and deep sleep time (predicted: 0.62 ± 0.65 hrs. vs. actual: 0.63 ± 0.59 hrs. from PSG). Lastly, we demonstrate the feasibility of our method for sleep staging from Apple Watch-derived measurements. Conclusion This work demonstrates the viability of high-accuracy, automated multi-class sleep staging from actigraphy and coarse heart rate measures that are device-agnostic and therefore well suited for extraction from smartwatches and other consumer wrist wearables. Support (if any) This work was supported in part by the NIH grant 1R21AG068890-01 and the American Association for University Women.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
H. S. Karthik ◽  
H. Akshata Shenoy ◽  
A. R. Usha Devi

2018 ◽  
Vol 4 (12) ◽  
pp. 142 ◽  
Author(s):  
Hongda Shen ◽  
Zhuocheng Jiang ◽  
W. Pan

Hyperspectral imaging (HSI) technology has been used for various remote sensing applications due to its excellent capability of monitoring regions-of-interest over a period of time. However, the large data volume of four-dimensional multitemporal hyperspectral imagery demands massive data compression techniques. While conventional 3D hyperspectral data compression methods exploit only spatial and spectral correlations, we propose a simple yet effective predictive lossless compression algorithm that can achieve significant gains on compression efficiency, by also taking into account temporal correlations inherent in the multitemporal data. We present an information theoretic analysis to estimate potential compression performance gain with varying configurations of context vectors. Extensive simulation results demonstrate the effectiveness of the proposed algorithm. We also provide in-depth discussions on how to construct the context vectors in the prediction model for both multitemporal HSI and conventional 3D HSI data.


Sign in / Sign up

Export Citation Format

Share Document