scholarly journals Quantum homotopy perturbation method for nonlinear dissipative ordinary differential equations

Author(s):  
Cheng Xue ◽  
Wu Yu-Chun ◽  
GuoPing Guo

Abstract While quantum computing provides an exponential advantage in solving linear differential equations, there are relatively few quantum algorithms for solving nonlinear differential equations. In our work, based on the homotopy perturbation method, we propose a quantum algorithm for solving n-dimensional nonlinear dissipative ordinary differential equations (ODEs). Our algorithm first converts the original nonlinear ODEs into other nonlinear ODEs which can be embedded into finite-dimensional linear ODEs. Then we solve the embedded linear ODEs with quantum linear ODEs algorithm and obtain a state ε-close to the normalized exact solution of the original nonlinear ODEs with success probability Ω(1). The complexity of our algorithm is O(gηTpoly(log(nT/ε))), where η, g measure the decay of the solution. Our algorithm provides exponential improvement over the best classical algorithms or previous quantum algorithms in n or ε.

The homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.


2008 ◽  
Vol 63 (1-2) ◽  
pp. 19-23 ◽  
Author(s):  
Mohammad Taghi Darvishi ◽  
Farzad Khani

We propose He’s homotopy perturbation method (HPM) to solve stiff systems of ordinary differential equations. This method is very simple to be implemented. HPM is employed to compute an approximation or analytical solution of the stiff systems of linear and nonlinear ordinary differential equations.


2011 ◽  
Vol 66 (1-2) ◽  
pp. 87-92 ◽  
Author(s):  
Mehmet Ali Balcı ◽  
Ahmet Yıldırım

In this study, we used the homotopy perturbation method (HPM) for solving fractional nonlinear differential equations. Three models with fractional-time derivative of order α, 0<α <1, are considered and solved. The numerical results demonstrate that this method is relatively accurate and easily implemented.


Nova Scientia ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 13 ◽  
Author(s):  
Umberto Filobello-Nino ◽  
Héctor Vázquez-Leal ◽  
Yasir Khan ◽  
D. Pereyra-Díaz ◽  
A. Pérez-Sesma ◽  
...  

In this article, modified non-linearities distribution homotopy perturbation method (MNDHPM) is used in order to find power series solutions to ordinary differential equations with initial conditions, both linear and nonlinear. We will see that the method is particularly relevant in some cases of equations with non-polynomial coefficients and inhomogeneous non-polynomial terms


2020 ◽  
Vol 18 (2) ◽  
pp. 113-121
Author(s):  
A. El Harfouf ◽  
A. Wakif ◽  
S. Hayani Mounir

In this current work, the heat transfer analysis for the unsteady squeezing magnetohydrodynamic flow of a viscous nanofluid between two parallel plates in the presence of thermal radiation, viscous and magnetic dissipations impacts, considering Fourier heat flux model have been explored. The partial differential equations representing flow model are reduced to nonlinear ordinary differential equations by introducing a similarity transformation. The dimensionless and nonlinear ordinary differential equations of the velocity and temperatures functions obtained are solved by employing the homotopy perturbation method. The effects of different parameters on the velocity and temperature profiles are examined graphically, and numerical calculations for the skin friction coefficient and local Nusselt number are tabulated. It is found an excellent agreement in the comparative study with literature results. This present numerical exploration has great relevance, consequently a better understanding of the squeezing flow phenomena in the hydraulic lifts, power transmission, nano gastric tubes, reactor fluidization areas.


2010 ◽  
Vol 65 (1-2) ◽  
pp. 65-70
Author(s):  
Changbum Chun

AbstractIn this paper, we present an efficient modification of the homotopy perturbation method by using Chebyshev’s polynomials and He’s polynomials to solve some nonlinear differential equations. Some illustrative examples are given to demonstrate the efficiency and reliability of the modified homotopy perturbation method.


Sign in / Sign up

Export Citation Format

Share Document