Discrete symmetry approach to exact bound-state solutions for a regular hexagon Dirac billiard

2021 ◽  
Author(s):  
Wajdi A Gaddah
Pramana ◽  
1992 ◽  
Vol 39 (5) ◽  
pp. 493-499 ◽  
Author(s):  
R N Chaudhuri ◽  
M Mondal

2010 ◽  
Vol 25 (33) ◽  
pp. 2849-2857 ◽  
Author(s):  
GUO-HUA SUN ◽  
SHI-HAI DONG

In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of scalar and vector spherically asymmetrical singular oscillators. This is done provided that the vector potential is equal to the scalar potential. The spinor wave functions and bound state energy levels are presented. The case V(r) = -S(r) is also considered.


We consider a special case of the fourth Painlevé equation given by d 2 ƞ / dξ 2 = 3 ƞ 5 + 2ξ ƞ 3 + (1/4ξ 2 - v - 1/2 ) ƞ , (1) with v a parameter, and seek solutions ƞ (ξ; v ) satisfying the boundary condition ƞ (∞)=0. (2) Equation (1) arises as a symmetry reduction of the derivative nonlinear Schrödinger (DNLS) equation, which is a completely integrable soliton equation solvable by inverse scattering techniques. Solutions of equation (1), satisfying (2), are expressed in terms of the solutions of linear integral equations obtained from the inverse scattering formalism for the DNLS equation. We obtain exact ‘bound state’ solutions of equation (1) for v = n , a positive integer, using the integral equation representation, which decay exponentially as ξ→ ± ∞ and are the first example of such solutions for the Painlevé equations. Additionally, using Bäcklund transformations for the fourth Painlevé equation, we derive a nonlinear recurrence relation (commonly referred to as a Bäcklund transformation in the context of soliton equations) for equation (1) relating ƞ (ξ; v ) and ƞ (ξ; v + 1).


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1268
Author(s):  
Aleksander Gajos

Study of certain angular correlations in the three-photon annihilations of the triplet state of positronium, the electron–positron bound state, may be used as a probe of potential CP and CPT-violating effects in the leptonic sector. We present the perspectives of CP and CPT tests using this process recorded with a novel detection system for photons in the positron annihilation energy range, the Jagiellonian Positron Emission Tomography (J-PET). We demonstrate the capability of this system to register three-photon annihilations with an unprecedented range of kinematical configurations and to measure the CPT-odd correlation between positronium spin and annihilation plane orientation with a precision improved by at least an order of magnitude with respect to present results. We also discuss the means to control and reduce detector asymmetries in order to allow J-PET to set the first measurement of the correlation between positronium spin and momentum of the most energetic annihilation photon which has never been studied to date.


Sign in / Sign up

Export Citation Format

Share Document