Robustness of multipartite entangled states for fermionic systems under noisy channels in non-inertial frames

2021 ◽  
Author(s):  
Kwang-Il Kim ◽  
Myong Chol Pak ◽  
Tae-Hyok Kim ◽  
Jong Chol Kim ◽  
Yong-Hae Ko ◽  
...  

Abstract We investigate robustness of bipartite and tripartite entangled states for fermionic systems in non-inertial frames, which are under noisy channels. We consider two Bell states and two Greenberger-Horne-Zeilinger (GHZ) states, which possess initially the same amount of entanglement, respectively. By using genuine multipartite (GM) concurrence, we analytically derive the equations that determine the difference between the robustness of these locally unitarily equivalent states under the amplitude-damping channel. We find that tendency of the robustness for two GHZ states evaluated by using three-tangle τ and GM concurrence as measures of genuine tripartite entanglement is equal to each other. We also find that the robustness of two Bell states is equal to each other under the depolarizing, phase damping and bit flip channels, and that the same is true for two GHZ states.

Author(s):  
Kwang-Il Kim ◽  
Myong Chol Pak ◽  
Son A Kim ◽  
Jin Ju Ri ◽  
Tae-Hyok Kim

In this paper, we investigate the decoherence of GHZ state under three noisy channels in non-inertial frames. The phase flip, the bit flip and the phase damping channels are considered as noisy channels, respectively. By using three-tangle [Formula: see text] as the measurement of entanglement, we numerically calculate the genuine tripartite entanglement of GHZ state under noisy environments in non-inertial frames. Unlike the case of phase damping channel, in the cases of the phase flip and the bit flip ones, we find that the effect of environment cannot only decay the genuine tripartite entanglement, but also revive it.


2002 ◽  
Vol 16 (12) ◽  
pp. 441-448 ◽  
Author(s):  
XIAN-TING LIANG ◽  
HONG-YI FAN

In this paper, we calculate the entanglement-assisted classical capacities of the depolarizing channel, the phase damping channel, the phase flip channel, the bit flip channel, the bit-phase flip channel, the two-Pauli channel and the amplitude channel, and discuss the analytical results obtained. The Stokes papametrization representation of a qubit and the characteristic of unitary covariance of some quantum noisy channels are used in the calculations.


2022 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Feng-Lin Wu ◽  
Zhen-Yu Peng ◽  
Si-Yuan Liu

Abstract We investigate how the correlated actions of quantum channels affect the robustness of entangled states. We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing, bit flip, bit-phase flip, and phase flip channels. It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels, and the Bell-like state is always the most robust state. We also consider the robustness of three-qubit pure states in correlated noisy channels. For the correlated bit flip and phase flip channels, the result shows that although the most robust and most fragile states are locally unitary equivalent, they exhibit different robustness in different correlated channels, and the effect of channel correlations on them is also significantly different. However, for the correlated depolarizing and bit-phase flip channels, the robustness of two special three-qubit pure states is exactly the same. Moreover, compared with the random three-qubit pure states, they are neither the most robust states nor the most fragile states.


2020 ◽  
Vol 18 (04) ◽  
pp. 2050018
Author(s):  
R. Laghmach ◽  
H. El Hadfi ◽  
B. Maroufi ◽  
M. Daoud

We give the explicit expressions of quantum Fisher information and skew information for a two-qubit Bell states. We investigate their dynamics under the decoherence effects: phase-damping channel, depolarizing channel and amplitude-damping channel. We also discuss the thermal entanglement quantified by Wootters concurrence for these three decoherence channels and we compare its dynamical behavior with the quantum Fisher information and skew information. We then use this comparison to investigate the influence of noisy channels on thermal entanglement and its role in boosting the performance of metrology protocols. It is shown that the correlations in two-qubit Bell states are more resistant to phase-damping channel and depolarizing channels.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 356
Author(s):  
Niel de Beaudrap ◽  
Steven Herbert

In this paper we propose a technique for distributing entanglement in architectures in which interactions between pairs of qubits are constrained to a fixed network G. This allows for two-qubit operations to be performed between qubits which are remote from each other in G, through gate teleportation. We demonstrate how adapting quantum linear network coding to this problem of entanglement distribution in a network of qubits can be used to solve the problem of distributing Bell states and GHZ states in parallel, when bottlenecks in G would otherwise force such entangled states to be distributed sequentially. In particular, we show that by reduction to classical network coding protocols for the k-pairs problem or multiple multicast problem in a fixed network G, one can distribute entanglement between the transmitters and receivers with a Clifford circuit whose quantum depth is some (typically small and easily computed) constant, which does not depend on the size of G, however remote the transmitters and receivers are, or the number of transmitters and receivers. These results also generalise straightforwardly to qudits of any prime dimension. We demonstrate our results using a specialised formalism, distinct from and more efficient than the stabiliser formalism, which is likely to be helpful to reason about and prototype such quantum linear network coding circuits.


2016 ◽  
pp. 105-114
Author(s):  
Eric Rowell

We find unitary matrix solutions R˜(a) to the (multiplicative parameter-dependent) (N, z)-generalized Yang-Baxter equation that carry the standard measurement basis to m-level N-partite entangled states that generalize the 2-level bipartite entangled Bell states. This is achieved by a careful study of solutions to the Yang-Baxter equation discovered by Fateev and Zamolodchikov in 1982.


2002 ◽  
Vol 2 (5) ◽  
pp. 367-378
Author(s):  
V.N. Gorbachev ◽  
A.I. Zhiliba ◽  
A.I. Trubilko ◽  
A.A. Rodichkina

A set of protocols for teleportation and dense coding schemes based on a multiparticle quantum channel, represented by the $N$-particle entangled states of the GHZ class, is introduced. Using a found representation for the GHZ states, it was shown that for dense coding schemes enhancement of the classical capacity of the channel due from entanglement is $N/N-1$. Within the context of our schemes it becomes clear that there is no one-to one correspondence between teleportation and dense coding schemes in comparison when the EPR channel is exploited. A set of schemes, for which two additional operations as entanglement and disentanglement are permitted, is considered.


2012 ◽  
Vol 12 (3&4) ◽  
pp. 253-261
Author(s):  
Satyabrata Adhikari ◽  
Indranil Chakrabarty ◽  
Pankaj Agrawal

In a realistic situation, the secret sharing of classical or quantum information will involve the transmission of this information through noisy channels. We consider a three qubit pure state. This state becomes a mixed-state when the qubits are distributed over noisy channels. We focus on a specific noisy channel, the phase-damping channel. We propose a protocol for secret sharing of classical information with this and related noisy channels. This protocol can also be thought of as cooperative superdense coding. We also discuss other noisy channels to examine the possibility of secret sharing of classical information.


Axiomathes ◽  
2020 ◽  
Author(s):  
Lorenzo Lorenzetti

Abstract It has been argued that Humean Supervenience (HS) is threatened by the existence of quantum entanglement relations. The most conservative strategy for defending HS is to add the problematic entanglement relations to the supervenience basis, alongside spatiotemporal relations. In this paper, I’m going to argue against this strategy by showing how certain particular cases of tripartite entanglement states – i.e. GHZ states – posit some crucial problems for this amended version of HS. Moreover, I will show that the principle of free recombination – which is strictly linked to HS – is severely undermined if we add entanglement relations to the supervenience basis. I conclude that the conservative move is very unappealing, and therefore the defender of HS should pursue other, more controversial, strategies (e.g. committing to the nomological interpretation of the wave function).


2019 ◽  
Vol 58 (12) ◽  
pp. 4152-4169
Author(s):  
Leili Esmaeilifar ◽  
Zeynab Harsij ◽  
Behrouz Mirza
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document