scholarly journals Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo

2018 ◽  
Vol 15 (2) ◽  
pp. 025001 ◽  
Author(s):  
Alina Oltean ◽  
Larry A Taber
1966 ◽  
Vol 44 (4) ◽  
pp. 661-676 ◽  
Author(s):  
Robert P. Thompson

To demonstrate the phenomenon of homologous inhibition by clearly interpretable results in a readily reactive system, experiments were carried out to study the effect of chick whole eye extract on the development of the vesicular lens of the chick embryo in vitro. The heads of embryos of 11 through 13 somites were explanted onto nutrient medium diluted with varying amounts of the extract, and cultured for 30 hours. A total of 35 embryos exposed to concentrations of 1:1, 1:2, and 1:4 (extract to medium) showed complete inhibition of lens vesicle formation. Of a total of 53 embryos on concentrations of 1:8, 1:16, 1:32, and 1:64, more than 50% showed inhibition of vesicle formation. The inhibitory effect disappeared at a concentration of 1:128. Control material exposed to some equivalent concentrations of nutrient medium – saline mixtures showed inhibition of vesicle formation in only 15% of 33 embryos. Of a total of 27 control embryos exposed to ventricular muscle extract, approximately one-third showed inhibition of vesicle formation at concentrations of 1:8 and 1:16, with the inhibitory effect disappearing at 1:32. The implications of this result are discussed. Other factors and control experiments are described and their value is assessed.


2017 ◽  
Vol 112 (3) ◽  
pp. 304a-305a ◽  
Author(s):  
Seyedhadi Hosseini ◽  
Larry A. Taber

2004 ◽  
Vol 272 (2) ◽  
pp. 339-350 ◽  
Author(s):  
Dmitry A. Voronov ◽  
Patrick W. Alford ◽  
Gang Xu ◽  
Larry A. Taber

Author(s):  
C.D. Fermin ◽  
M. Igarashi

Otoconia are microscopic geometric structures that cover the sensory epithelia of the utricle and saccule (gravitational receptors) of mammals, and the lagena macula of birds. The importance of otoconia for maintanance of the body balance is evidenced by the abnormal behavior of species with genetic defects of otolith. Although a few reports have dealt with otoconia formation, some basic questions remain unanswered. The chick embryo is desirable for studying otoconial formation because its inner ear structures are easily accessible, and its gestational period is short (21 days of incubation).The results described here are part of an intensive study intended to examine the morphogenesis of the otoconia in the chick embryo (Gallus- domesticus) inner ear. We used chick embryos from the 4th day of incubation until hatching, and examined the specimens with light (LM) and transmission electron microscopy (TEM). The embryos were decapitated, and fixed by immersion with 3% cold glutaraldehyde. The ears and their parts were dissected out under the microscope; no decalcification was used. For LM, the ears were embedded in JB-4 plastic, cut serially at 5 micra and stained with 0.2% toluidine blue and 0.1% basic fuchsin in 25% alcohol.


Author(s):  
J. P. Brunschwig ◽  
R. M. McCombs ◽  
R. Mirkovic ◽  
M. Benyesh-Melnick

A new virus, established as a member of the herpesvirus group by electron microscopy, was isolated from spontaneously degenerating cell cultures derived from the kidneys and lungs of two normal tree shrews. The virus was found to replicate best in cells derived from the homologous species. The cells used were a tree shrew cell line, T-23, which was derived from a spontaneous soft tissue sarcoma. The virus did not multiply or did so poorly for a limited number of passages in human, monkey, rodent, rabbit or chick embryo cells. In the T-23 cells, the virus behaved as members of the subgroup B of herpesvirus, in that the virus remained primarily cell associated.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


Author(s):  
M.A. Cuadros ◽  
M.J. Martinez-Guerrero ◽  
A. Rios

In the chick embryo retina (days 3-4 of incubation), coinciding with an increase in cell death, specialized phagocytes characterized by intense acid phosphatase activity have been described. In these preparations, all free cells in the vitreal humor (vitreal cells) were strongly labeled. Conventional TEM and SEM techniques were used to characterize them and attempt to determine their relationship with retinal phagocytes.Two types of vitreal cells were distinguished. The first are located at some distance from the basement membrane of the neuroepithelium, and are rounded, with numerous vacuoles and thin cytoplasmic prolongations. Images of exo- and or endocytosis were frequent; the cells showed a well-developed Golgi apparatus (Fig. 1) In SEM images, the cells was covered with short cellular processes (Fig. 3). Cells lying parallel to or alongside the basement membrane are elongated. The plasma membrane is frequently in intimate contact with the basement membrane. These cells have generally a large cytoplasmic expansion (Fig. 5).


Author(s):  
Adriana Verschoor ◽  
Ronald Milligan ◽  
Suman Srivastava ◽  
Joachim Frank

We have studied the eukaryotic ribosome from two vertebrate species (rabbit reticulocyte and chick embryo ribosomes) in several different electron microscopic preparations (Fig. 1a-d), and we have applied image processing methods to two of the types of images. Reticulocyte ribosomes were examined in both negative stain (0.5% uranyl acetate, in a double-carbon preparation) and frozen hydrated preparation as single-particle specimens. In addition, chick embryo ribosomes in tetrameric and crystalline assemblies in frozen hydrated preparation have been examined. 2D averaging, multivariate statistical analysis, and classification methods have been applied to the negatively stained single-particle micrographs and the frozen hydrated tetramer micrographs to obtain statistically well defined projection images of the ribosome (Fig. 2a,c). 3D reconstruction methods, the random conical reconstruction scheme and weighted back projection, were applied to the negative-stain data, and several closely related reconstructions were obtained. The principal 3D reconstruction (Fig. 2b), which has a resolution of 3.7 nm according to the differential phase residual criterion, can be compared to the images of individual ribosomes in a 2D tetramer average (Fig. 2c) at a similar resolution, and a good agreement of the general morphology and of many of the characteristic features is seen.Both data sets show the ribosome in roughly the same ’view’ or orientation, with respect to the adsorptive surface in the electron microscopic preparation, as judged by the agreement in both the projected form and the distribution of characteristic density features. The negative-stain reconstruction reveals details of the ribosome morphology; the 2D frozen-hydrated average provides projection information on the native mass-density distribution within the structure. The 40S subunit appears to have an elongate core of higher density, while the 60S subunit shows a more complex pattern of dense features, comprising a rather globular core, locally extending close to the particle surface.


Sign in / Sign up

Export Citation Format

Share Document