scholarly journals Physical and Mechanical Forces that Shape Heart Tube in the Chick Embryo

2017 ◽  
Vol 112 (3) ◽  
pp. 304a-305a ◽  
Author(s):  
Seyedhadi Hosseini ◽  
Larry A. Taber
Development ◽  
1975 ◽  
Vol 33 (1) ◽  
pp. 1-11
Author(s):  
Carlos Argüello ◽  
María V. De La Cruz ◽  
Concepción Sánchez Gómez

A study was made of the development of the heart tube beginning from Hamburger & Hamilton (1951) stage 8+ up to stage 12. We used labelling with particles of iron oxide followed with time-lapse cinemicrophotography, staining with methylene blue, serial section and cutting the embryo in two halves. Our results led to the conclusion that the tubular heart is formed by the addition of precardiac material into its posterior end, but in addition it is necessary to consider the fusion of the myocardium in a cephalic direction, starting with the fusion of both heart primordia at the rostral end. By this fusion the most anterior part of the heart up to stage 12 is formed.


1977 ◽  
Vol 61 (2) ◽  
pp. 330-337 ◽  
Author(s):  
G.M. Rajala ◽  
M.J. Pinter ◽  
S. Kaplan

2004 ◽  
Vol 272 (2) ◽  
pp. 339-350 ◽  
Author(s):  
Dmitry A. Voronov ◽  
Patrick W. Alford ◽  
Gang Xu ◽  
Larry A. Taber

Author(s):  
Larry A. Taber ◽  
Dmitry A. Voronov ◽  
Mathieu C. Re´mond ◽  
Kimberly S. Latacha ◽  
Patrick W. Alford

Cardiac looping is a vital morphogenetic process that transforms the initially straight heart tube into a curved tube normally directed toward the right side of the embryo. We examined the role of biomechanical forces during the initial stages of looping, when the heart bends and rotates into a c-shaped tube (c-looping). C-looping consists of two primary deformation components: ventral bending and dextral (rightward) rotation (torsion). Embryonic chick hearts were subjected to mechanical and chemical perturbations, and the experiments were simulated using a computational model. The results suggest that bending is driven primarily by actin polymerization within the heart tube, while rotation is driven by external loads due to the splanchnopleure and omphalomesenteric veins. The results of this study may help investigators searching for the link between gene expression and the mechanical processes that drive looping.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1405-1417 ◽  
Author(s):  
M.K. Osmond ◽  
A.J. Butler ◽  
F.C. Voon ◽  
R. Bellairs

The vitamin A derivative retinoic acid has previously been shown to have teratogenic effects on heart development in mammalian embryos. The craniomedial migration of the precardiac mesoderm during the early stages of heart formation is thought to depend on a gradient of extracellular fibronectin associated with the underlying endoderm. Here, the effects of retinoic acid on migration of the precardiac mesoderm have been investigated in the early chick embryo. When applied to the whole embryo in culture, the retinoid inhibits the craniomedial migration of the precardiac mesoderm resulting in a heart tube that is stunted cranially, while normal or enlarged caudally. Similarly, a local application of retinoic acid to the heart-forming area disrupts the formation of the cardiogenic crescent and the subsequent development of a single mid-line heart tube. This effect is analogous to removing a segment of endoderm and mesoderm across the heart-forming area and results in various degrees of cardia bifida. At higher concentrations of retinoic acid and earlier developmental stages, two completely separate hearts are produced, while at lower concentrations and later stages there are partial bifurcations. The controls, in which the identical operation is carried out except that dimethyl sulphoxide (DMSO) is used instead of the retinoid, are almost all normal. We propose that one of the teratogenic effects of retinoic acid on the heart is to disrupt the interaction between precardiac cells and the extracellular matrix thus inhibiting their directed migration on the endodermal substratum.


Author(s):  
C.D. Fermin ◽  
M. Igarashi

Otoconia are microscopic geometric structures that cover the sensory epithelia of the utricle and saccule (gravitational receptors) of mammals, and the lagena macula of birds. The importance of otoconia for maintanance of the body balance is evidenced by the abnormal behavior of species with genetic defects of otolith. Although a few reports have dealt with otoconia formation, some basic questions remain unanswered. The chick embryo is desirable for studying otoconial formation because its inner ear structures are easily accessible, and its gestational period is short (21 days of incubation).The results described here are part of an intensive study intended to examine the morphogenesis of the otoconia in the chick embryo (Gallus- domesticus) inner ear. We used chick embryos from the 4th day of incubation until hatching, and examined the specimens with light (LM) and transmission electron microscopy (TEM). The embryos were decapitated, and fixed by immersion with 3% cold glutaraldehyde. The ears and their parts were dissected out under the microscope; no decalcification was used. For LM, the ears were embedded in JB-4 plastic, cut serially at 5 micra and stained with 0.2% toluidine blue and 0.1% basic fuchsin in 25% alcohol.


Author(s):  
J. P. Brunschwig ◽  
R. M. McCombs ◽  
R. Mirkovic ◽  
M. Benyesh-Melnick

A new virus, established as a member of the herpesvirus group by electron microscopy, was isolated from spontaneously degenerating cell cultures derived from the kidneys and lungs of two normal tree shrews. The virus was found to replicate best in cells derived from the homologous species. The cells used were a tree shrew cell line, T-23, which was derived from a spontaneous soft tissue sarcoma. The virus did not multiply or did so poorly for a limited number of passages in human, monkey, rodent, rabbit or chick embryo cells. In the T-23 cells, the virus behaved as members of the subgroup B of herpesvirus, in that the virus remained primarily cell associated.


Sign in / Sign up

Export Citation Format

Share Document