scholarly journals Enhancing Ground-based Observations of Trans-Neptunian Objects Using a Single-epoch Parallax Measurement from L2

2021 ◽  
Vol 133 (1029) ◽  
pp. 114401
Author(s):  
Mark R. Giovinazzi ◽  
Cullen H. Blake ◽  
Pedro H. Bernardinelli
Keyword(s):  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wanke Liu ◽  
Mingkui Wu ◽  
Xiaohong Zhang ◽  
Wang Wang ◽  
Wei Ke ◽  
...  

AbstractThe BeiDou global navigation satellite system (BDS-3) constellation deployment has been completed on June 23, 2020, with a full constellation comprising 30 satellites. In this study, we present the performance assessment of single-epoch Real-Time Kinematic (RTK) positioning with tightly combined BeiDou regional navigation satellite system (BDS-2) and BDS-3. We first investigate whether code and phase Differential Inter-System Biases (DISBs) exist between the legacy B1I/B3I signals of BDS-3/BDS-2. It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints. These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning. Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3. The performance is evaluated through ambiguity resolution success rate, ambiguity dilution of precision, as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan. Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions. Moreover, the RTK performance is much improved with tightly combined BDS-3/BDS-2, particularly in challenging or harsh conditions. The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9% even with an elevation cut-off angle of 40°, indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia–Pacific region. Meanwhile, the three-dimensional (East/North/Up) positioning accuracy of BDS-3 only solution (0.52 cm/0.39 cm/2.14 cm) in the kinematic test is significantly better than that of the BDS-2 only solution (0.85 cm/1.02 cm/3.01 cm) due to the better geometry of the current BDS-3 constellation. The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm, 0.22 cm, and 1.80 cm, respectively.


2018 ◽  
Vol 617 ◽  
pp. A118 ◽  
Author(s):  
F. G. Saturni ◽  
M. Bischetti ◽  
E. Piconcelli ◽  
A. Bongiorno ◽  
C. Cicone ◽  
...  

We present the analysis of the restframe optical-to-UV spectrum of APM 08279+5255, a well-known lensed broad absorption line (BAL) quasar at z = 3.911. The spectroscopic data were taken with the optical DOLoRes and near-IR NICS instruments at TNG, and include the previously unexplored range between C III] λ1910 and [O III] λλ4959,5007. We have investigated the possible presence of multiple BALs by computing “balnicity” and absorption indexes (i.e., BI, BI0, and AI) for the transitions Si IV λ1400, C IV λ1549, Al III λ1860, and Mg II λ2800. No clear evidence for the presence of absorption features is found in addition to the already known, prominent BAL associated to C IV, which supports a high-ionization BAL classification for APM 08279+5255. We also studied the properties of the [O III], Hβ, and Mg II emission lines. We find that [O III] is intrinsically weak (F[OIII]∕FHβ ≲ 0.04), as it is typically found in luminous quasars with a strongly blueshifted C IV emission line (~2500 km s−1 for APM 08279+5255). We computed the single-epoch black hole mass based on Mg II and Hβ broad emission lines, finding MBH = (2 ÷ 3) × 1010μ−1 M⊙, with the magnification factor μ that can vary between 4 and 100 according to CO and restframe UV-to-mid-IR imaging respectively. Using a Mg II equivalent width (EW)-to-Eddington ratio relation, the EWMgII ~ 27 Å measured for APM 08279+5255 translates into an Eddington ratio of ~0.4, which is more consistent with μ = 4. This magnification factor also provides a value of MBH that is consistent with recent reverberation-mapping measurements derived from C IV and Si IV.


2016 ◽  
Vol 227 (1) ◽  
pp. 8 ◽  
Author(s):  
Sang-Sung Lee ◽  
Kiyoaki Wajima ◽  
Juan-Carlos Algaba ◽  
Guang-Yao Zhao ◽  
Jeffrey A. Hodgson ◽  
...  
Keyword(s):  

2020 ◽  
Vol 903 (2) ◽  
pp. 112
Author(s):  
Elena Dalla Bontà ◽  
Bradley M. Peterson ◽  
Misty C. Bentz ◽  
W. N. Brandt ◽  
S. Ciroi ◽  
...  

2021 ◽  
Vol 21 (10) ◽  
pp. 249
Author(s):  
Zhong-Rui Bai ◽  
Hao-Tong Zhang ◽  
Hai-Long Yuan ◽  
Dong-Wei Fan ◽  
Bo-Liang He ◽  
...  

Abstract LAMOST Data Release 5, covering ∼17 000 deg2 from –10° to 80° in declination, contains 9 million co-added low-resolution spectra of celestial objects, each spectrum combined from repeat exposure of two to tens of times during Oct 2011 to Jun 2017. In this paper, we present the spectra of individual exposures for all the objects in LAMOST Data Release 5. For each spectrum, the equivalent width of 60 lines from 11 different elements are calculated with a new method combining the actual line core and fitted line wings. For stars earlier than F type, the Balmer lines are fitted with both emission and absorption profiles once two components are detected. Radial velocity of each individual exposure is measured by minimizing χ 2 between the spectrum and its best template. The database for equivalent widths of spectral lines and radial velocities of individual spectra are available online. Radial velocity uncertainties with different stellar type and signal-to-noise ratio are quantified by comparing different exposure of the same objects. We notice that the radial velocity uncertainty depends on the time lag between observations. For stars observed in the same day and with signal-to-noise ratio higher than 20, the radial velocity uncertainty is below 5km s−1, and increases to 10 km s−1 for stars observed in different nights.


2002 ◽  
Vol 199 ◽  
pp. 116-117
Author(s):  
N.R. Mohan ◽  
K.R. Anantharamaiah ◽  
W.M. Goss

A search for radio recombination lines near 20 cm at z=0.193 and z=0.886 towards the gravitational lens system PKS1830-211 has yielded upper limits of |τL| ≤ 5 × 10−5 and ≤ 5 × 10−4 at the two redshifts respectively. Based on the non-detections, we derive upper limits to the emission measure of the ionized gas in the absorbing systems. We also present continuum flux density measurements over the frequency range 0.3—45 GHz made at a single epoch.


2020 ◽  
Vol 222 (3) ◽  
pp. 1686-1703
Author(s):  
Colin M Hardy ◽  
Philip W Livermore ◽  
Jitse Niesen

SUMMARY Mounting evidence from both seismology and numerical experiments on core composition suggests the existence of a layer of stably stratified fluid at the top of Earth’s outer core. In such a layer, a magnetostrophic force balance and suppressed radial motion lead to stringent constraints on the magnetic field, named Malkus constraints, which are a much more restrictive extension of the well known Taylor constraints. Here, we explore the consequences of such constraints for the structure of the core’s internal magnetic field. We provide a new simple derivation of these Malkus constraints, and show solutions exist which can be matched to any external potential field with arbitrary depth of stratified layer. From considerations of these magnetostatic Malkus constraints alone, it is therefore not possible to uniquely infer the depth of the stratified layer from external geomagnetic observations. We examine two models of the geomagnetic field defined within a spherical core, which obey the Taylor constraints in an inner convective region and the Malkus constraints in an outer stratified layer. When matched to a single-epoch geomagnetic potential field model, both models show that the toroidal magnetic field within the outer layer is about 100 times stronger compared to that in the inner region, taking a maximum value of 8 mT at a depth of 70 km. The dynamic regime of such a layer, modulated by suppressed radial motion but also a locally enhanced magnetic field, may therefore be quite distinct from that of any interior dynamo.


Sign in / Sign up

Export Citation Format

Share Document