Metachronal propulsion of non-Newtonian viscoelastic mucus in an axisymmetric tube with ciliated walls

2021 ◽  
Vol 73 (3) ◽  
pp. 035006
Author(s):  
S Shaheen ◽  
K Maqbool ◽  
R Ellahi ◽  
Sadiq M Sait
Keyword(s):  
Author(s):  
Elsayed F. Elshehawey ◽  
Ayman M. F. Sobh

Peristaltic motion of viscoelastic incompressible fluid in an axisymmetric tube with a sinusoidal wave is studied theoretically in the case that the radius of the tube is small relative to the wavelength. Oldroyd flow has been considered in this study and the problem is formulated and analyzed using a perturbation expansion in terms of the variation of the wave number. This analysis can model the chyme movement in the small intestine by considering the chyme as an Oldroyd fluid. We found out that the pumping rate of Oldroyd fluid is less than that for a Newtonian fluid. Further, the effects of Reynolds number, Weissenberg number, amplitude ratio and wave number on the pressure rise and friction force have been discussed. It is found that the pressure rise does not depend on Weissenberg number at a certain value of flow rate. The results are studied for various values of the physical parameters of interest.


2018 ◽  
Vol 15 ◽  
pp. 1247-1254
Author(s):  
Steve Wilson ◽  
Hui Long ◽  
Georgy Garter

2014 ◽  
Vol 69 (8-9) ◽  
pp. 462-472 ◽  
Author(s):  
Nasir Ali ◽  
Zaheer Asghar

We have investigated the peristaltic motion of a non-Newtonian fluid characterized by the finitely extendable nonlinear elastic-Peterlin (FENE-P) fluid model. A background for the development of the differential constitutive equation of this model has been provided. The flow analysis is carried out both for two-dimensional planar channel and axisymmetric tube. The governing equations have been simplified under the widely used assumptions of long wavelength and low Reynolds number in a frame of reference that moves with constant wave speed. An exact solution is obtained for the stream function and longitudinal pressure gradient with no slip condition. We have portrayed the effects of Deborah number and extensibility parameter on velocity profile, trapping phenomenon, and normal stress. It is observed that normal stress is an increasing function of Deborah number and extensibility parameter. As far as the velocity at the channel (tube) center is concerned, it decreases (increases) by increasing Deborah number (extensibility parameter). The non-Newtonian rheology also affect the size of trapped bolus in a sense that it decreases (increases) by increasing Deborah number (extensibility parameter). Further, it is observed through numerical integration that both Deborah number and extensibility parameter have opposite effects on pressure rise per wavelength and frictional forces at the wall. Moreover, it is shown that the results for the Newtonian model can be deduced as a special case of the FENE-P model


Sign in / Sign up

Export Citation Format

Share Document