Dynamical time versus system time in quantum mechanics

2012 ◽  
Vol 21 (7) ◽  
pp. 070302 ◽  
Author(s):  
Dušan Arsenović ◽  
Nikola Burić ◽  
Dragomir Davidović ◽  
Slobodan Prvanović
2020 ◽  
Vol 2 (2) ◽  
pp. 233-252
Author(s):  
Ossama Kullie

Attosecond science, beyond its importance from application point of view, is of a fundamental interest in physics. The measurement of tunneling time in attosecond experiments offers a fruitful opportunity to understand the role of time in quantum mechanics. In the present work, we show that our real T-time relation derived in earlier works can be derived from an observable or a time operator, which obeys an ordinary commutation relation. Moreover, we show that our real T-time can also be constructed, inter alia, from the well-known Aharonov–Bohm time operator. This shows that the specific form of the time operator is not decisive, and dynamical time operators relate identically to the intrinsic time of the system. It contrasts the famous Pauli theorem, and confirms the fact that time is an observable, i.e., the existence of time operator and that the time is not a parameter in quantum mechanics. Furthermore, we discuss the relations with different types of tunneling times, such as Eisenbud–Wigner time, dwell time, and the statistically or probabilistic defined tunneling time. We conclude with the hotly debated interpretation of the attoclock measurement and the advantage of the real T-time picture versus the imaginary one.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Sebastian Fortin ◽  
Olimpia Lombardi ◽  
Matías Pasqualini

2020 ◽  
Vol 35 (21) ◽  
pp. 2050114
Author(s):  
M. Bauer ◽  
C. A. Aguillón ◽  
G. E. García

The problem of time in the quantization of gravity arises from the fact that time in Schrödinger’s equation is a parameter. This sets time apart from the spatial coordinates, represented by operators in quantum mechanics (QM). Thus “time” in QM and “time” in general relativity (GR) are seen as mutually incompatible notions. The introduction of a dynamical time operator in relativistic quantum mechanics (RQM), that follows from the canonical quantization of special relativity and that in the Heisenberg picture is also a function of the parameter [Formula: see text] (identified as the laboratory time), prompts to examine whether it can help to solve the disfunction referred to above. In particular, its application to the conditional interpretation of time in the canonical quantization approach to quantum gravity is developed.


KronoScope ◽  
2013 ◽  
Vol 13 (1) ◽  
pp. 67-84 ◽  
Author(s):  
Pierre Martinetti

Abstract We discuss the emergence of time in quantum gravity and ask whether time is always “something that flows.” We first recall that this is indeed the case in both relativity and quantum mechanics, although in very different manners: time flows geometrically in relativity (i.e., as a flow of proper time in the four dimensional space-time), time flows abstractly in quantum mechanics (i.e., as a flow in the space of observables of the system). We then ask the same question in quantum gravity in the light of the thermal time hypothesis of Connes and Rovelli. The latter proposes to answer the question of time in quantum gravity (or at least one of its many aspects) by postulating that time is a state-dependent notion. This means that one is able to make a notion of time as an abstract flow—that we call the thermal time—emerge from the knowledge of both: the algebra of observables of the physical system under investigation; a state of thermal equilibrium of this system. Formally, the thermal time is similar to the abstract flow of time in quantum mechanics, but we show in various examples that it may have a concrete implementation either as a geometrical flow or as a geometrical flow combined with a non-geometric action. This indicates that in quantum gravity, time may well still be “something that flows” at some abstract algebraic level, but this does not necessarily imply that time is always and only “something that flows” at the geometric level.


2006 ◽  
Vol 36 (3) ◽  
pp. 407-426 ◽  
Author(s):  
M. Castagnino ◽  
M. Gadella ◽  
O. Lombardi

Sign in / Sign up

Export Citation Format

Share Document