scholarly journals Emergence of Time in Quantum Gravity: Is Time Necessarily Flowing?

KronoScope ◽  
2013 ◽  
Vol 13 (1) ◽  
pp. 67-84 ◽  
Author(s):  
Pierre Martinetti

Abstract We discuss the emergence of time in quantum gravity and ask whether time is always “something that flows.” We first recall that this is indeed the case in both relativity and quantum mechanics, although in very different manners: time flows geometrically in relativity (i.e., as a flow of proper time in the four dimensional space-time), time flows abstractly in quantum mechanics (i.e., as a flow in the space of observables of the system). We then ask the same question in quantum gravity in the light of the thermal time hypothesis of Connes and Rovelli. The latter proposes to answer the question of time in quantum gravity (or at least one of its many aspects) by postulating that time is a state-dependent notion. This means that one is able to make a notion of time as an abstract flow—that we call the thermal time—emerge from the knowledge of both: the algebra of observables of the physical system under investigation; a state of thermal equilibrium of this system. Formally, the thermal time is similar to the abstract flow of time in quantum mechanics, but we show in various examples that it may have a concrete implementation either as a geometrical flow or as a geometrical flow combined with a non-geometric action. This indicates that in quantum gravity, time may well still be “something that flows” at some abstract algebraic level, but this does not necessarily imply that time is always and only “something that flows” at the geometric level.

2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2019 ◽  
Vol 25 (2) ◽  
pp. 327-340 ◽  
Author(s):  
Gábor Etesi

Abstract Continuity as appears to us immediately by intuition (in the flow of time and in motion) differs from its current formalization, the arithmetical continuum or equivalently the set of real numbers used in modern mathematical analysis. Motivated by the known mathematical and physical problems arising from this formalization of the continuum, our aim in this paper is twofold. Firstly, by interpreting Chaitin’s variant of Gödel’s first incompleteness theorem as an inherent uncertainty or fuzziness of the arithmetical continuum, a formal set-theoretic entropy is assigned to the arithmetical continuum. Secondly, by analyzing Noether’s theorem on symmetries and conserved quantities, we argue that whenever the four dimensional space-time continuum containing a single, stationary, asymptotically flat black hole is modeled by the arithmetical continuum in the mathematical formulation of general relativity, the hidden set-theoretic entropy of this latter structure reveals itself as the entropy of the black hole (proportional to the area of its “instantaneous” event horizon), indicating that this apparently physical quantity might have a pure set-theoretic origin, too.


Author(s):  
Jae-Kwang Hwang

Three-dimensional quantized space model is newly introduced. Quantum mechanics and relativity theory are explained in terms of the warped three-dimensional quantized spaces with the quantum time width (Dt=tq). The energy is newly defined as the 4-dimensional space-time volume of E = cDtDV in the present work. It is shown that the wave function of the quantum mechanics is closely related to the warped quantized space shape with the space time-volume. The quantum entanglement and quantum wave function collapse are explained additionally. The special relativity theory is separated into the energy transition associated with the space-time shape transition of the matter and the momentum transition associated with the space-time location transition. Then, the quantum mechanics and the general relativity theory are about the 4-dimensional space-time volume and the 4-dimensional space-time distance, respectively.


2000 ◽  
Vol 15 (04) ◽  
pp. 293-308 ◽  
Author(s):  
GREGORY GABADADZE ◽  
ZURAB KAKUSHADZE

We conjecture that a T-dual form of pure QCD describes dynamics of point-like monopoles. T-duality transforms the QCD Lagrangian into a matrix quantum mechanics of zero-branes which we identify with monopoles. At generic points of the monopole moduli space, the SU (N) gauge group is broken down to U (1)N-1 reproducing the key feature of 't Hooft's Abelian projection. There are certain points in the moduli space where monopole positions coincide, gauge symmetry is enhanced and gluons emerge as massless excitations. We show that there is a linearly rising potential between zero-branes. This indicates the presence of a stretched flux tube between monopoles. The lowest energy state is achieved when monopoles are sitting on top of each other and gauge symmetry is enhanced. In this case they behave as free massive particles and can be condensed. In fact, we find a constant eigenfunction of the corresponding Hamiltonian which describes condensation of monopoles. Using the monopole quantum mechanics, we argue that large-N QCD in this T-dual picture is a theory of a closed bosonic membrane propagating in five-dimensional space–time. QCD point-like monopoles can be regarded in this approach as constituents of the membrane.


Author(s):  
Yasunari Nishikawa

Abstract We study a two-loop finiteness of an effective potential for a Higgs boson that is the fifth component of a gauge field in an U(1) gauge theory coupled to quantum gravity on the five-dimensional space-time M4 × S1. There are two types of diagrams including quantum gravitational corrections. We find that only one type of diagram contributes to the effective potential for the Higgs boson in fact and its magnitude is finite.


2006 ◽  
Vol 15 (02) ◽  
pp. 437-440 ◽  
Author(s):  
M. DȨBICKI ◽  
A. GÓŹDŹ

In this paper we consider the time as a dynamical variable. In particular we apply the time operator to an example of the particle arrival problem within two-dimensional space–time.


Sign in / Sign up

Export Citation Format

Share Document