Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition

2016 ◽  
Vol 25 (1) ◽  
pp. 014202
Author(s):  
Yan-Chao She ◽  
Ting-Ting Luo ◽  
Wei-Xi Zhang ◽  
Mao-Wu Ran ◽  
Deng-Long Wang
2018 ◽  
Vol 2 (12) ◽  
pp. 2263-2271 ◽  
Author(s):  
Jianbo Xiong ◽  
Xinyue Li ◽  
Chunqing Yuan ◽  
Sergey Semin ◽  
Zhaoquan Yao ◽  
...  

Studies of the non-linear optical properties of classical AIEgens are rare, despite their important potential applications in organic composite photonic circuits. Here, we present experimental results, supported by theoretical calculations, of the non-linear optical (NLO) properties of TPE and its halogenated derivates.


1993 ◽  
Vol 329 ◽  
Author(s):  
Douglas A. Keszler ◽  
Annapoorna Akella ◽  
Kathleen I. Schaffers ◽  
Theodore Alekel

AbstractBy considering selected examples of new structure types, guidelines are set forth for the synthesis of new solid-state inorganic borates that are likely to have desirable properties for nonlinear optical applications. The structures of two new, noncentrosymmetric orthoborate fluorides BaCaBO3F and Ba7(BO3)3F5 demonstrate a feasibility for controlling linear optical properties and for producing noncentrosymmetric borates that melt congruently. The structure of SrLi(B3O5)3 represents an additional example of a noncentrosymmetric borate resulting from chirality of the B3O7 ring. In addition to potential practical value, crystals of the type AMOB2O5 (A = K, Rb, and Cs; M = Nb and Ta) provide a unique means for examining the structural dependent interrelationships of linear and nonlinear optical properties.


2016 ◽  
Vol 7 ◽  
pp. 111-120 ◽  
Author(s):  
Mario Hentschel ◽  
Bernd Metzger ◽  
Bastian Knabe ◽  
Karsten Buse ◽  
Harald Giessen

We study the linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic gap nanoantennas. Using a two-step-aligned electron beam lithography process, we demonstrate the ability to selectively and reproducibly fill the gap region of nanoantennas with dielectric nanoparticles made of lithium niobate (LiNbO3) with high efficiency. The linear optical properties of the antennas are modified due to the large refractive index of the material. This leads to a change in the coupling strength as well as an increase of the effective refractive index of the surrounding. The combination of these two effects causes a red- or blue-shift of the plasmonic modes, respectively. We find that the nonlinear optical properties of the combined system are only modified in the range of one order of magnitude. The observed changes in our experiments in the nonlinear emission can be traced to the changed dielectric environment and thus the modified linear optical properties. The intrinsic nonlinearity of the dielectric used is in fact small when compared to the nonlinearity of the metallic part of the hybrid antennas. Thus, the nonlinear signals generated by the antenna itself are dominant in our experiments. We demonstrate that the well-known nonlinear response of bulk dielectric materials cannot always straightforwardly be used to boost the nonlinear response of nanoscale antenna systems. Our results significantly deepen the understanding of these interesting hybrid systems and offer important guidelines for the design of nanoscale, nonlinear light sources.


2017 ◽  
Vol 5 (11) ◽  
pp. 2865-2870 ◽  
Author(s):  
Tariq Khan ◽  
Muhammad Adnan Asghar ◽  
Zhihua Sun ◽  
Aurang Zeb ◽  
Chengmin Ji ◽  
...  

A supra-molecular crystal, 1-[C6H13NH][18-crown-6][ClO4] monohydrate, has been reported to show reversible dielectric anomalies and nonlinear optical properties, which suggests that it could be conceived as the potential switchable dielectric and non-linear optical material.


2021 ◽  
Author(s):  
Muhammad Ishaq ◽  
Rao Aqil Shehzad ◽  
Khurshid Ayub ◽  
javed iqbal

Abstract The concern of the present study is to investigate the non-linear optical properties of super halogen doped borophene owing to its broad applications. The first principle study of the material for its non-linear optical properties elaborated its use for electrical and optical applications. The super halogen-based borophene in lithium ion-based batteries and medical appliances have made it one of the most potential materials for optoelectronics. First, hyperpolarizability (βo) of pure and doped B36 is computed and the difference between their values was examined. The vertical ionization energy (VIE) was calculated for pure and doped systems. The interaction energy (Eint) for all combinations was computed. It would be expected to one of the best materials to have high capacity and resistance. For all the calculations and to calculate the HOMO and LUMO energy gap, the density functional theory (DFT) method was used. After observing all the above properties, it was predicted that these combinations are more beneficial and displayed the better nonlinear optical (NLO) for electronic devices.


2020 ◽  
Vol 44 (45) ◽  
pp. 19623-19629
Author(s):  
Lijing Gong ◽  
Cheng Ma ◽  
Tiejun Liu ◽  
Jinkai Lv ◽  
Xianchao Xun

The nonlinear optical properties of the studied compounds were studied with the help of DFT calculations.


Sign in / Sign up

Export Citation Format

Share Document