Multi-phase field simulation of competitive grain growth for directional solidification

2021 ◽  
Author(s):  
Chang-sheng Zhu ◽  
Zi-hao Gao ◽  
Peng Lei ◽  
Li Feng ◽  
Bo-rui Zhao

Abstract The multi-phase field model of grain competitive growth during directional solidification of alloy was established, solving multi-phase field models for thin interface layer thickness conditions, grain boundary evolution and grain elimination during the competitive growth of SCN-0.24wt% camphor model alloy bi-crystals were investigated, the effects of different crystal orientations and pulling velocities on grain boundary microstructure evolution were quantitatively analyzed. The results show that in the competitive growth of convergent bi-crystals, when favorably oriented dendrites are in the same direction as the heat flow and the pulling speed is too large, the orientation angle of the bi-crystal from small to large is the normal elimination phenomenon of the favorably oriented dendrite blocking the unfavorably oriented dendrite, and the grain boundary is along the growth direction of the favorably oriented dendrite, and when the pulling speed becomes small, the grain boundary shows the anomalous elimination phenomenon of the unfavorably oriented dendrite eliminating the favorably oriented dendrite. In the process of competitive growth of divergent bi-crystal, when the growth direction of favorably oriented dendrites is the same as the heat flow direction and the orientation angle of unfavorably oriented grains is small, the frequency of new spindles of favorably oriented grains is significantly higher than that of unfavorably oriented grains, and as the orientation angle of unfavorably oriented dendrites becomes larger, the unfavorably oriented grains are more likely to have stable secondary dendritic arms, which in turn develop new primary dendritic arms to occupy the liquid phase grain boundary space, but the grain boundary direction is still parallel to favorably oriented dendrites. In addition, the tertiary dendritic arms on the developed secondary dendritic arms may also be blocked by the surrounding lateral branches from further developing into nascent main axes, this blocking of the tertiary dendritic arms has a random nature, which can have an impact on the generation of nascent primary main axes in the grain boundaries.

China Foundry ◽  
2018 ◽  
Vol 15 (5) ◽  
pp. 333-342 ◽  
Author(s):  
Li Feng ◽  
Ya-long Gao ◽  
Ni-ni Lu ◽  
Chang-sheng Zhu ◽  
Guo-sheng An ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1004
Author(s):  
Ka Gao ◽  
Zan Zhang ◽  
Junliang Zhao ◽  
Dejian Sun ◽  
Fu Wang

In an abruptly changing velocity under directional solidification, microstructures and the growth orientation of Al-Al2Cu eutectic lamellar were characterized. The change in solidification rate led to an interfacial instability, which results in a bifurcation of the eutectic lamella into new, refined lamellae. The growth orientation of the eutectic Al2Cu phase was also only in its (001) direction and more strongly oriented to the heat flow direction. The results suggest that the eutectic lamellar Al-Al2Cu bifurcation and the spacing adjustment may be caused by the rate determining lateral diffusion of the solutes after interfacial instability.


Author(s):  
Kento Oshima ◽  
Tomohiro Takaki ◽  
Mayu Muramatsu

It is vitally important to ensure the safety of brittle materials. Therefore, it is essential to deeply understand the interaction of the material's microstructure and crack propagation. In this study, we constructed a multi-phase-field crack model which can express crack propagation in polycrystal. To evaluate the basic characteristics of the developed model, we performed two-dimensional crack propagation simulations in a bicrystal where a crack enters an inclined grain boundary by changing the ratio of the grain boundary energy to the crack surface energy. As a result, it is confirmed that the model can reasonably determine the crack path, depending on those conditions. Furthermore, by performing crack propagation simulations in a polycrystal, it is concluded that the model can properly express transgranular and intergranular cracks.


2013 ◽  
Vol 747-748 ◽  
pp. 797-803 ◽  
Author(s):  
Li Wu Jiang ◽  
Shu Suo Li ◽  
Mei Ling Wu ◽  
Ya Fang Han

The grain competitive growth and elimination during the directional solidification of a Ni3Al-base single crystal superalloy IC6SX prepared by spiral grain selection method was studied systematically. The experimental results revealed that there were 5 kinds of mechanism during the grain competitive growth and elimination. The grains with preferred growth direction and smaller deviation angle to growth direction have stronger competitiveness, and the mutual thwarting of dendrites played an important role in the processing of grains competitive growth. The results can explain the competitive growth mechanism during the directional solidification and can be used to optimize processing parameters to lay an important foundation for improving preparation processes of single crystal superalloys.


Sign in / Sign up

Export Citation Format

Share Document