Dark matter with chiral symmetry admixed hadronic matter in compact stars

2021 ◽  
Author(s):  
SiNa Wei ◽  
Zhaoqing Feng

Abstract With the two-fluid TOV equation, the properties of dark matter (DM) admixed NSs (DANSs) have been studied. Different from previous studies, we found that increase of the maximum mass and decrease of the radius of 1.4 $M_\odot$ can occur simultaneously in DANS. This stems from the fact that the equation of state (EOS) of DM can be very soft at low density but very stiff at high density. It is well known that the IU-FSU and XS models can not reproduce the neutron star (NS) with a maximum mass greater than 2.0 $M_\odot$. However, considering IU-FSU and XS models in DANS, there are always mass and interactions of DM that can reproduce a maximum mass greater than 2.0 $M_\odot$ and the radius of 1.4 $M_\odot$ below 13.7km. The difference of DANS between the DM with chiral symmetry (DMC) and the DM with meson exchange (DMM) becomes obvious when the central energy density ratio of the DM is greater than one of the NM. When the central energy density ratio of the DM is greater than one of the NM, the DMC model with the DM mass of 1000 MeV still can reproduce a maximum mass greater than 2.0 $M_\odot$ and the radius of 1.4 $M_\odot$ below 13.7km. In the same case, although the maximum mass of DANS with the DMM model is greater than 2.0 $M_\odot$ , the radius of 1.4 $M_\odot$ with the DMM model will surpass 13.7km obviously. \com{In two-fluid system, it is worth noting that the maximum mass of DANS can be larger than 3.0 $M_\odot$. As a consequence, the dimensionless tidal deformability $\Lambda_{CP}$ of DANS with 1.4 $M_\odot$, which increase with increasing the maximum mass of DANS, could be larger than 800 when the radius of DANS with 1.4 $M_\odot$ is about 13.0km.}

2019 ◽  
Vol 28 (11) ◽  
pp. 1950148
Author(s):  
Xu Dong Wang ◽  
Bin Qi ◽  
Gao Le Yang ◽  
Nai Bo Zhang ◽  
Shou Yu Wang

The dark matter admixed neutron stars (DANSs) are studied using the two-fluid TOV equations separately, in which the normal matter (NM) and dark matter (DM) are simulated by the relativistic mean field theory and self-interacting fermionic model, respectively. A universal relationship [Formula: see text] is suggested, where [Formula: see text] is the maximum mass of DM existing in DANSs, [Formula: see text] is the particle mass of DM ranging from 5[Formula: see text]GeV to 1[Formula: see text]TeV, [Formula: see text] is the interaction mass scale with the value 300[Formula: see text]GeV (0.1[Formula: see text]GeV) for weak (strong) interaction DM model. This simple formula connects directly the microcosmic nature of DM particle with its macrocosmic mass existing in DANSs. Meanwhile, such a formula exhibits that the existence of NM has little effect on [Formula: see text]. It is found that the ratio of radius of DM in DANSs over [Formula: see text] is a constant with the value about 12[Formula: see text] (7[Formula: see text]) for weak (strong) interaction DM cases. According to the calculated results, only for the strong interaction DM cases with [Formula: see text] to [Formula: see text][Formula: see text]GeV and central energy density [Formula: see text][Formula: see text]MeV/fm3, DM has obvious effect on the mass of compact star. Compared with the energy density of DM in the Milky Way galaxy, [Formula: see text][Formula: see text]MeV/fm3, the existence of DM might hardly affect the mass of compact stars in the Milky Way galaxy.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650037 ◽  
Author(s):  
R. C. Baral ◽  
K. K. Mohanta ◽  
N. R. Panda ◽  
P. K. Sahu

Compact stars are classified into three categories: neutron stars (NSs), quark stars (QSs) and hybrid stars (HSs). Stars having only hadronic matter are NSs, QSs having only quark matter up to u, d and s quarks and stars having quark core surrounded by a mixed matter (hadronic matter and quark matter) followed by hadronic matter are HSs. The mixed matter is well distributed to both hadron and quark matters. A huge magnetic field is predicted in the core of the neutron star and is observed in the surface of the neutron star. We study the effect of such huge magnetic field in the matter inside the compact objects basically the equation of state (EOS) of the matters. Since matter inside the star are very dense both hadronic and quark matter, we consider relativistic mean field theory in the hadronic matter and simple MIT bag model in the quark matter in the presence of strong magnetic field. We calculate the phase transition between hadronic and quark phases, maximum mass and eigenfrequencies of radial pulsation of NS, HS and QS in the presence of such a huge magnetic field. The mixed phase is constructed by using Glendenning conjecture in between hadron and quark phases. We find in the presence of magnetic field, the EOS in both matter becomes soft. As a result, the maximum mass is reduced and the period of oscillation is changed significantly and there is a sudden dip in the period of oscillations in the HS, which signifies the transition from one to another matter.


2003 ◽  
Vol 18 (32) ◽  
pp. 2255-2264 ◽  
Author(s):  
O. A. Battistel ◽  
G. Krein

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
Author(s):  
Davide Fiscaletti

A nonlinear model of Brownian motion is developed in a three-dimensional quantum vacuum defined by a variable quantum vacuum energy density corresponding to processes of creation/annihilation of virtual particles. In this model, the polarization of the quantum vacuum determined by a perturbative fluctuation of the quantum vacuum energy density associated with a fluctuating viscosity, which mimics the action of dark matter, emerges as the fundamental entity which generates the Brownian motion.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


2001 ◽  
Vol 691 (1-2) ◽  
pp. 146-155 ◽  
Author(s):  
E. Oset ◽  
D. Jido ◽  
J.E. Palomar

1969 ◽  
Vol 36 (1) ◽  
pp. 65-73 ◽  
Author(s):  
R. E. Kelly

Wave diffraction due to a step change in bottom topography is considered for the case of two superimposed fluids of different, but constant, densities. The interface lies below the upper surface of the step. Shallow water theory is shown to be applicable only if the ratio of a non-dimensional frequency parameter to the departure of the density ratio from unity is sufficiently small. An approximate solution of the full equations, obtained by a method applied by Miles (1967) to surface wave diffraction, yields results limited only by the condition that the frequency parameter be small.


Sign in / Sign up

Export Citation Format

Share Document