scholarly journals Brownian motion and polarized three-dimensional quantum vacuum

2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
Author(s):  
Davide Fiscaletti

A nonlinear model of Brownian motion is developed in a three-dimensional quantum vacuum defined by a variable quantum vacuum energy density corresponding to processes of creation/annihilation of virtual particles. In this model, the polarization of the quantum vacuum determined by a perturbative fluctuation of the quantum vacuum energy density associated with a fluctuating viscosity, which mimics the action of dark matter, emerges as the fundamental entity which generates the Brownian motion.

2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Davide Fiscaletti ◽  
Amrit Sorli

AbstractA three-dimensional quantum vacuum condensate is introduced as a fundamental medium from which gravity emerges in a geometro-hydrodynamic limit. In this approach, the curvature of space-time characteristic of general relativity is obtained as a mathematical value of a more fundamental actual variable energy density of quantum vacuum which has a concrete physical meaning. The fluctuations of the quantum vacuum energy density suggest an interesting solution for the dark energy problem.


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
H. Razmi ◽  
S. M. Shirazi

Considering the fundamental cutoff applied by the uncertainty relations’ limit on virtual particles’ frequency in the quantum vacuum, it is shown that the vacuum energy density is proportional to the inverse of the fourth power of the dimensional distance of the space under consideration and thus the corresponding vacuum energy automatically regularized to zero value for an infinitely large free space. This can be used in regularizing a number of unwanted infinities that happen in the Casimir effect, the cosmological constant problem, and so on without using already known mathematical (not so reasonable) techniques and tricks.


2018 ◽  
Vol 63 (7) ◽  
pp. 623 ◽  
Author(s):  
D. Fiscaletti ◽  
A. Sorli

In Quantum Relativity, time and space are separated. Time is the numerical order of material changes, and space is the medium, in which these changes take place. Space has the origin in a three-dimensional quantum vacuum defined by fluctuations of the energy density corresponding to elementary RS (reduction state) processes of creation/annihilation of elementary quanta. Quantum Relativity provides a unifying approach to special relativity, general relativity, and quantum mechanics. Each physical object from the micro- to the macroscale can be derived from an opportune diminishing of the quantum vacuum energy density. In particular, the variable energy density of space in Quantum Relativity corresponds to the curvature of space in general relativity. In quantum theory, the behavior of each subatomic particle follows from opportune elementary RS processes of creation/annihilation of quanta guided by a quantum potential of the vacuum. Finally, the perspectives of this model regarding the view of gravity and quantum as two aspects of the same coin and the electroweak scale are analyzed.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


2012 ◽  
Vol 79 (3) ◽  
pp. 327-334 ◽  
Author(s):  
BO LEHNERT

AbstractAn attempt is made to explain dark energy and dark matter of the expanding universe in terms of the zero point vacuum energy. This analysis is mainly limited to later stages of an observable nearly flat universe. It is based on a revised formulation of the spectral distribution of the zero point energy, for an ensemble in a defined statistical equilibrium having finite total energy density. The steady and dynamic states are studied for a spherical cloud of zero point energy photons. The ‘antigravitational’ force due to its pressure gradient then represents dark energy, and its gravitational force due to the energy density represents dark matter. Four fundamental results come out of the theory. First, the lack of emitted radiation becomes reconcilable with the concepts of dark energy and dark matter. Second, the crucial coincidence problem of equal orders of magnitude of mass density and vacuum energy density cannot be explained by the cosmological constant, but is resolved by the present variable concepts, which originate from the same photon gas balance. Third, the present approach becomes reconcilable with cosmical dimensions and with the radius of the observable universe. Fourth, the deduced acceleration of the expansion agrees with the observed one. In addition, mass polarity of a generalized gravitation law for matter and antimatter is proposed as a source of dark flow.


Author(s):  
Ervin Goldfain

The textbook analysis of vacuum energy density (VED) in flat spacetime follows from Pauli’s lectures of 1951, in which quantum vacuum is modeled as a reservoir of free harmonic oscillators. In his lectures, Pauli shows that deriving a nearly vanishing VED is contingent upon fulfilling three corollary conditions called polynomial-in-mass-constraints. The goal of this work is to evaluate Pauli’s constraints against the Standard Model parameters and the Higgs mechanism of spontaneous symmetry breaking.


2011 ◽  
Vol 2011 ◽  
pp. 1-3
Author(s):  
Bogusław Broda ◽  
Michał Szanecki

It has been argued that the correct, that is, positive, sign of quantum vacuum energy density, or, more properly, negative sign of quantum vacuum pressure, requires not a very large, and to some extent model-independent, number, for example, ∼100, of additional, undiscovered fundamental bosonic particle species, absent in the standard model. Interpretation of the new particle species in terms of dark matter ones permits to qualitatively, and even quantitatively, connect all the three concepts given in the title.


Author(s):  
Davide Fiscaletti

<p>A model of a three-dimensional dynamic quantum vacuum with variable energy density is proposed. In this model, time we measure with clocks is only a mathematical parameter of changes running in quantum vacuum. Mass and gravity are carried by the variable energy density of quantum vacuum. Each elementary particle is a structure of quantum vacuum and diminishes the quantum vacuum energy density. Symmetry “particle – diminished energy density of quantum vacuum” is the fundamental symmetry of the universe which gives origin to the inertial and gravitational mass. Special relativity’s Sagnac effect in GPS system and important predictions of general relativity such as precessions of the planets, the Shapiro time delay of light signals in a gravitational field and the geodetic and frame-dragging effects recently tested by Gravity Probe B, have origin in the dynamics of the quantum vacuum which rotates with the earth.</p>


Sign in / Sign up

Export Citation Format

Share Document