scholarly journals A new multi-wavelength solar telescope: Optical and Near-infrared Solar Eruption Tracer (ONSET)

2013 ◽  
Vol 13 (12) ◽  
pp. 1509-1517 ◽  
Author(s):  
Cheng Fang ◽  
Peng-Fei Chen ◽  
Zhen Li ◽  
Ming-De Ding ◽  
Yu Dai ◽  
...  
2013 ◽  
Vol 02 (01) ◽  
pp. 1350007 ◽  
Author(s):  
A. CALCINES ◽  
R. L. LÓPEZ ◽  
M. COLLADOS

This paper presents the proposal of a high resolution, integral field spectrograph that is currently being designed for the 4-meter aperture European Solar Telescope that will be located in the Canary Islands. This instrument is optimized to study the solar chromosphere and photosphere to allow the investigation of several phenomena concentrated within these two layers. It will be able to observe simultaneously a bidimensional field of view of 80 arcsec2 that is reorganized, using an integral field unit, into 8 long slits of 200 arcsec length by 0.05 arcsec width. It will have the capability to observe different layers of the Sun at the same time due to its multi-wavelength capability that allows the observation of 5 visible and 3 near-infrared wavelength intervals from 3900 to 23,000 Å, with a spectral resolution of about 300,000. The designed instrument is telecentric and presents an optical quality limited by diffraction.


2018 ◽  
Vol 14 (S343) ◽  
pp. 456-457
Author(s):  
Foteini Lykou ◽  
Josef Hron ◽  
Daniela Klotz

AbstractRecent advances in high-angular resolution instruments (VLT and VLTI, ALMA) have enabled us to delve deep into the circumstellar envelopes of AGB stars from the optical to the sub-mm wavelengths, thus allowing us to study in detail the gas and dust formation zones (e.g., their geometry, chemistry and kinematics). This work focuses on four (4) C-rich AGB stars observed with a high-angular resolution technique in the near-infrared: a multi-wavelength tomographic study of the dusty layers of the circumstellar envelopes of these C-rich stars, i.e. the variations in the morphology and temperature distribution.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2017 ◽  
Vol 12 (S333) ◽  
pp. 183-190
Author(s):  
Matt J. Jarvis ◽  
Rebecca A.A. Bowler ◽  
Peter W. Hatfield

AbstractForeground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.


1999 ◽  
Vol 171 ◽  
pp. 103-110 ◽  
Author(s):  
Renée C. Kraan-Korteweg

AbstractThe systematic mapping of obscured and optically invisible galaxies behind the Milky Way through complementary surveys are important in arriving at the whole-sky distribution of complete galaxy samples and therewith for our understanding of the dynamics in the local Universe. In this paper, a status report is given of the various deep optical, near infrared (NIR), and systematic blind H I-surveys in the Zone of Avoidance, including a discussion on the limitations and selection effects inherent to the different multi-wavelength surveys and first results.


2020 ◽  
Vol 637 ◽  
pp. A52 ◽  
Author(s):  
R. Nanni ◽  
R. Gilli ◽  
C. Vignali ◽  
M. Mignoli ◽  
A. Peca ◽  
...  

We present the X-ray source catalog for the ∼479 ks Chandra exposure of the SDSS J1030+0524 field, which is centered on a region that shows the best evidence to date of an overdensity around a z > 6 quasar, and also includes a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1.7. Using wavdetect for initial source detection and ACIS Extract for source photometry and significance assessment, we create preliminary catalogs of sources that are detected in the full (0.5−7.0 keV), soft (0.5−2.0 keV), and hard (2−7 keV) bands, respectively. We produce X-ray simulations that mirror our Chandra observation to filter our preliminary catalogs and achieve a completeness level of > 91% and a reliability level of ∼95% in each band. The catalogs in the three bands are then matched into a final main catalog of 256 unique sources. Among them, 244, 193, and 208 are detected in the full, soft, and hard bands, respectively. The Chandra observation covers a total area of 335 arcmin2 and reaches flux limits over the central few square arcmins of ∼3 × 10−16, 6 × 10−17, and 2 × 10−16 erg cm−2 s−1 in the full, soft, and hard bands, respectively This makes J1030 field the fifth deepest extragalactic X-ray survey to date. The field is part of the Multiwavelength Survey by Yale-Chile (MUSYC), and is also covered by optical imaging data from the Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT), near-infrared imaging data from the Canada France Hawaii Telescope WIRCam (CFHT/WIRCam), and Spitzer IRAC. Thanks to its dense multi-wavelength coverage, J1030 represents a legacy field for the study of large-scale structures around distant accreting supermassive black holes. Using a likelihood ratio analysis, we associate multi-band (r, z, J, and 4.5 μm) counterparts for 252 (98.4%) of the 256 Chandra sources, with an estimated reliability of 95%. Finally, we compute the cumulative number of sources in each X-ray band, finding that they are in general agreement with the results from the Chandra Deep Fields.


2005 ◽  
Author(s):  
S. M. Lopez Silva ◽  
R. Giannetti ◽  
M. L. Dotor ◽  
D. Golmayo ◽  
P. Martin ◽  
...  

2011 ◽  
Vol 7 (S282) ◽  
pp. 259-260
Author(s):  
J. H. Groh

AbstractWe summarize recent efforts from our group to constrain the nature of both stars in the Eta Carinae binary system and its orbital parameters by studying the influence of the companion star on the spectrum of the primary star. We find that the cavity in the dense wind of the primary star strongly affects multi-wavelength diagnostics such as the ultraviolet spectrum, the optical hydrogen lines, and the shape of the near-infrared continuum region. These diagnostics have been previously interpreted as requiring a latitude-dependent wind generated by a fast-rotating primary star, but the effects of the companion on them provide tenuous evidence that the primary star is a rapid rotator.


Sign in / Sign up

Export Citation Format

Share Document