Far-infrared electroluminescence characteristics of an InGaP/InGaAs/Ge triple-junction solar cell under forward DC bias

2012 ◽  
Vol 33 (6) ◽  
pp. 064008 ◽  
Author(s):  
Wenbo Xiao ◽  
Xingdao He ◽  
Yiqing Gao ◽  
Zhimin Zhang ◽  
Jiangtao Liu
2015 ◽  
Vol 8 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Wei Zhao ◽  
Zhigang Zhou ◽  
Mengxun Chen

Research on automatic tracking solar concentrator photovoltaic systems has gained increasing attention in developing the solar PV technology. A paraboloidal concentrator with secondary optic is developed for a three-junction GaInP/GalnAs/Ge solar cell. The concentration ratio of this system is 200 and the photovoltaic cell is cooled by the heat pipe. A detailed analysis on the temperature coefficient influence factors of triple-junction solar cell under different high concentrations (75X, 100X, 125X, 150X, 175X and 200X) has been conducted based on the dish-style concentration photovoltaic system. The results show that under high concentrated light intensity, the temperature coefficient of Voc of triple-junction solar cell is increasing as the concentration ratio increases, from -10.84 mV/°C @ 75X growth to -4.73mV/°C @ 200X. At low concentration, the temperature coefficient of Voc increases rapidly, and then increases slowly as the concentration ratio increases. The temperature dependence of η increased from -0.346%/°C @ 75X growth to - 0.103%/°C @ 200X and the temperature dependence of Pmm and FF increased from -0.125 W/°C, -0.35%/°C @ 75X growth to -0.048W/°C, -0.076%/°C @ 200X respectively. It indicated that the temperature coefficient of three-junction GaInP/GalnAs/Ge solar cell is better than that of crystalline silicon cell array under concentrating light intensity.


2021 ◽  
Vol 2 (2) ◽  
pp. 100340
Author(s):  
Choongman Moon ◽  
Brian Seger ◽  
Peter Christian Kjærgaard Vesborg ◽  
Ole Hansen ◽  
Ib Chorkendorff

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 638
Author(s):  
Sanam SaeidNahaei ◽  
Hyun-Jun Jo ◽  
Sang Jo Lee ◽  
Jong Su Kim ◽  
Sang Jun Lee ◽  
...  

For examining the carrier movements through tunnel junction, electrically and optically-biased photoreflectance spectroscopy (EBPR and OBPR) were used to investigate the internal electric field in the InGaP/GaAs dual junction solar cell at room temperature. At InGaP and GaAs, the strength of p-n junction electric fields (Fpn) was perturbed by the external DC bias voltage and CW light intensity for EBPR and OBPR experiments, respectively. Moreover, the Fpn was evaluated using the Fast Fourier Transform (FFT) of the Franz—Keldysh oscillation from PR spectra. In the EBPR, the electric field decreased by increasing the DC bias voltage, which also decreased the potential barrier. In OBPR, when incident CW light is absorbed by the top cell, the decrement of the Fpn in the GaAs cell indicates that the photogenerated carriers are accumulated near the p-n junction. Photogenerated carriers in InGaP can pass through the tunnel junction, and the PR results show the contribution of the modification of the electric field by the photogenerated carriers in each cell. We suggest that PR spectroscopy with optical-bias and electrical-bias could be analyzed using the information of the photogenerated carrier passed through the tunnel junction.


2019 ◽  
Vol 14 (1) ◽  
pp. 1-5
Author(s):  
Victor De Rezende Cunha ◽  
Daniel Neves Micha ◽  
Rudy Massami Sakamoto Kawabata ◽  
Luciana Dornelas Pinto ◽  
Mauricio Pamplona Pires ◽  
...  

Electrical current mismatching is a well-known limitation of triple junction solar cells that lowers the final conversion efficiency. Several solutions have been proposed to face this issue, including the insertion of a multiple quantum well structure as the intermediate junction’s active material. With a better matching in the current among the junctions, the total current increases, thus modifying the working conditions of the overall device. In this way, the InGaP top junction needs to be optimized to such new condition. In this work, numerical simulations were carried out aiming the enlargement of the electrical current density of an InGaP pn junction to achieve the proper current matching in triple junction solar cell for spatial applications. The optimized structure has been grown in a GaAs substrate and characterized as a single junction solar cell. Although the measured short circuit current density and conversion efficiency are still well below the theoretically predicted values, processing improvement should lead to adequate cell performance.


Author(s):  
Omar Saif ◽  
Mohamed Abouelatta ◽  
Ahmed Shaker ◽  
M K Elsaid

Solar RRL ◽  
2020 ◽  
Vol 4 (9) ◽  
pp. 2000210 ◽  
Author(s):  
David Lackner ◽  
Oliver Höhn ◽  
Ralph Müller ◽  
Paul Beutel ◽  
Patrick Schygulla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document