Low-resistance joint development for segment-fabrication of high-temperature superconducting fusion magnets

2021 ◽  
Author(s):  
Satoshi Ito ◽  
Hitoshi Tamura ◽  
Nagato Yanagi ◽  
Hidetoshi Hashizume
2018 ◽  
Vol 28 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Joao Murta-Pina ◽  
Nuno Vilhena ◽  
Pedro Arsenio ◽  
Anabela Pronto ◽  
Alfredo Alvarez

2020 ◽  
Vol 10 (10) ◽  
pp. 59-67
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.


2021 ◽  
Vol 11 (7) ◽  
pp. 3074
Author(s):  
Jae Young Jang ◽  
Myung Su Kim ◽  
Young Jin Hwang ◽  
Seunghyun Song ◽  
Yojong Choi ◽  
...  

A cryogen-free portable 3 T high-temperature superconducting magnet for an electromagnetic property measurement system has been developed to serve as a user facility at the Korea Basic Science Institute. The metallic insulation method was adopted to reduce the charging delay without sacrificing the self-protecting feature. A genetic-algorithm-aided optimized design was carried out to minimize the superconducting tape consumption while satisfying several design constraints. After the design, the compact high-temperature superconducting magnet composed of eight double-pancake coil modules was wound with high-temperature superconducting tape and stainless steel tape, and integrated with a two-stage cryo-cooler. The 3 T magnet was successfully cooled to approximately 20 K with a cryo-cooler and reached the target field of 3 T without any problems. Long-term measurements and a range of other tests were also implemented to verity the performance of the magnet. Test results demonstrated the feasibility of a cryogen-free portable high-temperature superconducting magnet system for electromagnetic property measurement experiments.


Sign in / Sign up

Export Citation Format

Share Document