Transient pressure behavior for a horizontal well with multiple finite-conductivity fractures in tight reservoirs

2015 ◽  
Vol 12 (4) ◽  
pp. 638-656 ◽  
Author(s):  
Jingjing Guo ◽  
Haitao Wang ◽  
Liehui Zhang
Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4232 ◽  
Author(s):  
Guoqiang Xing ◽  
Shuhong Wu ◽  
Jiahang Wang ◽  
Mingxian Wang ◽  
Baohua Wang ◽  
...  

A fractured horizontal well is an effective technology to obtain hydrocarbons from tight reservoirs. In this study, a new semi-analytical model for a horizontal well intercepted by multiple finite-conductivity reorientation fractures was developed in an anisotropic rectangular tight reservoir. Firstly, to establish the flow equation of the reorientation fracture, all reorientation fractures were discretized by combining the nodal analysis technique and the fracture-wing method. Secondly, through coupling the reservoir solution and reorientation fracture solution, a semi-analytical solution for multiple reorientation fractures along a horizontal well was derived in the Laplace domain, and its accuracy was also verified. Thirdly, typical flow regimes were identified on the transient-pressure curves. Finally, dimensionless pressure and pressure derivative curves were obtained to analyze the effect of key parameters on the flow behavior, including fracture angle, permeability anisotropy, fracture conductivity, fracture spacing, fracture number, and fracture configuration. Results show that, for an anisotropic rectangular tight reservoir, horizontal wells should be deployed parallel to the direction of principal permeability and fracture reorientation should be controlled to extend along the direction of minimum permeability. Meanwhile, the optimal fracture number should be considered for economic production and the fracture spacing should be optimized to reduce the flow interferences between reorientation fractures.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ren Zongxiao ◽  
Du Kun ◽  
Shi Junfeng ◽  
Liu Wenqiang ◽  
Qu Zhan ◽  
...  

Due to a large number of natural fractures in tight oil reservoir, many complex fracture networks are generated during fracturing operation. There are five kinds of flow media in the reservoir: “matrix, natural fracture, hydraulic fracture network, perforation hole, and horizontal wellbore”. How to establish the seepage model of liquid in multiscale medium is a challenging problem. Firstly, this paper establishes the dual medium seepage model based on source function theory, principle of superposition, and Laplace transformation and then uses the “star-triangle” transform method to establish the transient pressure behavior model in the complex fracture network. After that, perforating seepage model and variable mass flow in horizontal wellbore were established. Finally, continuous condition was used to couple the seepage model of dual medium seepage model, transient pressure behavior model in the complex fracture network, perforation seepage model, and the variable mass seepage model in horizontal wellbore, to establish a semianalytical coupled seepage model for horizontal well in tight reservoir. This paper provides theoretical basis for field application of horizontal well with complex fracture networks.


1978 ◽  
Vol 18 (04) ◽  
pp. 253-264 ◽  
Author(s):  
Heber Cinco L. ◽  
F. Samaniego V. ◽  
N. Dominguez A.

Abstract A mathematical model was developed to study the transient behavior of a well with a finite-conductivity vertical fracture in an infinite slab reservoir. For values of dimensionless time of interest, to >10, the dimensionless wellbore pressure, p, can be correlated by the dimensionless group; wk / x k, where w, k, and x are the width, permeability, and half length of the fracture, respectively, and k represents the formation permeability. Results when plotted as a function of P vs log to give, for large t, a 1.151-slope straight line; hence, semilogarithmic pressure analysis methods can be applied. When plotted in terms o/ log P vs log t, a family of curves of characteristic shape result. A type-curve matching procedure can be used to analyze early time transient procedure can be used to analyze early time transient pressure data to obtain the formation and fracture pressure data to obtain the formation and fracture characteristics. Introduction Hydraulic fracturing is an effective technique for increasing the productivity of damaged wells or wells producing from low permeability formations. Much research has been conducted to determine the effect of hydraulic fractures on well performance and transient pressure behavior. The results have been used to improve the design of hydraulic fractures. Many methods have been proposed to determine formation properties and fracture characteristics from transient pressure and flow rate data. These methods have been based on either analytical or numerical solutions of the transient flow of fluids toward fractured wells. Recently, Gringarten et al. made an important contribution to the analysis of transient pressure data of fractured wells. They presented a type-curve analysis and three basic presented a type-curve analysis and three basic solutions: the infinite-fracture conductivity solution (zero pressure drop along a vertical fracture the uniform flux solution for vertical fractures, and the uniform flux solution for horizontal fractures. Although the assumption of an infinite fracture conductivity is adequate for some cases, we must consider a finite conductivity for large or very low flow capacity fractures. Sawyer and Locke studied the transient pressure behavior of finite-conductivity vertical fractures in gas wells. Their solutions cannot be used to analyze transient pressure data because only specific cases were presented. In this study, we wanted to prepare general solutions for the transient pressure behavior of a well intersected by a finite-conductivity vertical fracture. The solutions sought should be useful for short-time or type-curve analysis. We also wanted to show whether conventional methods could be applied to analyze transient pressure data for these conditions. A combination of both methods, as pointed out by Gringarten to al., should permit an pointed out by Gringarten to al., should permit an extraordinary confidence level concerning the analysis of field data. STATEMENT OF THE PROBLEM AND DEVELOPMENT OF FLOW MODELS The transient pressure behavior for a fractured well can be studied by analyzing the solution of the differential equations that describe this phenomenon with proper initial and boundary conditions. To simplify the derivation of flow models, the following assumptions are made.An isotropic, homogeneous, horizontal, infinite, slab reservoir is bounded by an upper and a lower impermeable strata. The reservoir has uniform thickness, h, permeability, k, and porosity, which are independent of pressure.The reservoir contains a slightly compressible fluid of compressibility, c, and viscosity, mu, and both properties are constant.Fluid is produced through a vertically fractured well intersected by a fully penetrating, finite-conductivity fracture of half length, x, width, w, permeability, k, and porosity, phi . These fracture permeability, k, and porosity, phi . These fracture characteristics are constant. Fluid entering the wellbore comes only through the fracture. A system with these assumptions is shown in Fig. 1. In addition, we assume that gravity effects are negligible and also that laminar flow occurs in the system.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pin Jia ◽  
Defeng Wu ◽  
Hengfei Yin ◽  
Zhuang Li ◽  
Linsong Cheng ◽  
...  

Fractured horizontal wells have been widely used to develop unconventional oil and gas reservoirs. In previous studies, most studies on the transient pressure behavior of multistage horizontal wells were based on the assumption of single porosity medium, in which the coupling relationship of natural fractures and artificial fractures was not taken into account or artificial fractures were assumed to be infinitely conductive. In this paper, the fracture is finite conductive, which means that there is flow resistance in the fracture. Based on point-source method and superposition principle, a transient model for multistage fractured horizontal wells, which considers the couple of fracture flow and reservoir seepage, is built and solved with the Laplace transformation. The transient pressure behavior in multistage fractured horizontal wells is discussed, and effects of influence factors are analyzed. The result of this article can be used to identify the response characteristic of fracture conductivity to pressure and pressure differential and provide theoretical basis for effective development of tight oil reservoirs. The findings of this study can help for better understanding of transient pressure behavior of multistage fractured horizontal wells with finite conductivity in tight oil reservoirs.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1342-1363 ◽  
Author(s):  
Liwu Jiang ◽  
Tongjing Liu ◽  
Daoyong Yang

Summary In this study, theoretical models have been formulated, validated, and applied to evaluate the transient pressure behavior of a horizontal well with multiple fractures in a tight formation by taking stress-sensitive fracture conductivity into account. On the basis of the superposition principle in the Laplace domain, we propose a coupled matrix/fracture-flow model with consideration of the stress-sensitivity effect in fractures, which strengthens the nonlinearity of the governing equations. More specifically, a new slab-source function in the Laplace domain was developed to describe the transient pressure responses caused by fluid flow from the matrix to the fracture, and a new solution was derived to describe the fluid flow in the fracture under the stress-sensitivity effect. Subsequently, a semianalytical method was applied by discretizing each hydraulic fracture into small segments, and a linearization scheme and an iteration method are adopted to deal with the nonlinear problem in the Laplace domain. Meanwhile, a modified superposition principle was proposed and applied to generate the pressure distributions for buildup tests with consideration of stress-sensitive fracture conductivity. Furthermore, pressure responses and their corresponding derivative type curves were generated to examine the effect of stress-sensitive conductivity. For pressure-drawdown tests, it is found that gradual increases in both pressure drop and pressure derivative occur over time because of the partial closure of the fractures. The stress-sensitivity effect in fractures becomes more evident with a smaller fracture conductivity and a larger fracture-permeability modulus. From the pressure-buildup curves, a one-fourth-slope line characteristic of the bilinear-flow period and constant derivatives of 0.5 representing a pseudoradial-flow regime can be clearly observed. Only fracture conductivity near the wellbore at the shut-in time can be estimated from the buildup pressures obtained in this work, whereas pressure-buildup analysis derived from the traditional superposition principle will result in an erroneous evaluation of the stress-sensitive fracture conductivity. It is also found that the effect of permeability hysteresis in the fractures has a negligible impact on the pressure-buildup responses.


SPE Journal ◽  
1998 ◽  
Vol 3 (02) ◽  
pp. 181-190 ◽  
Author(s):  
Erdal Ozkan ◽  
Turhan Yildiz ◽  
Fikri Kuchuk

Sign in / Sign up

Export Citation Format

Share Document