scholarly journals Correlation functions and transport coefficients in generalised hydrodynamics

2022 ◽  
Vol 2022 (1) ◽  
pp. 014002 ◽  
Author(s):  
Jacopo De Nardis ◽  
Benjamin Doyon ◽  
Marko Medenjak ◽  
Miłosz Panfil

Abstract We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear and nonlinear response on top of equilibrium and non-equilibrium states. We consider the problems from the complementary perspectives of the general hydrodynamic theory of many-body systems, including hydrodynamic projections, and form-factor expansions in integrable models, and show how they provide a comprehensive and consistent set of exact methods to extract large scale behaviours. Finally, we overview various applications in integrable spin chains and field theories.

Author(s):  
Juan Pérez-Mercade

We present a scenario that is useful for describing hierarchies within classes of many-component systems. Although this scenario may be quite general, it will be illustrated in the case of many-body systems whose space-time evolution can be described by a class of stochastic parabolic nonlinear partial differential equations. The stochastic component we will consider is in the form of additive noise, but other forms of noise such as multiplicative noise may also be incorporated. It will turn out that hierarchical behavior is only one of a class of asymptotic behaviors that can emerge when an out-of-equilibrium system is coarse grained. This phenomenology can be analyzed and described using the renormalization group (RG) [6, 15]. It corresponds to the existence of complex fixed points for the parameters characterizing the system. As is well known (see, for example, Hochberg and Perez-Mercader [8] and Onuki [12] and the references cited there), parameters such as viscosities, noise couplings, and masses evolve with scale. In other words, their values depend on the scale of resolution at which the system is observed (examined). These scaledependent parameters are called effective parameters. The evolutionary changes due to coarse graining or, equivalently, changes in system size, are analyzed using the RG and translate into differential equations for the probability distribution function [8] of the many-body system, or the n-point correlation functions and the effective parameters. Under certain conditions and for systems away from equilibrium, some of the fixed points of the equations describing the scale dependence of the effective parameters can be complex; this translates into complex anomalous dimensions for the stochastic fields and, therefore, the correlation functions of the field develop a complex piece. We will see that basic requirements such as reality of probabilities and maximal correlation lead, in the case of complex fixed points, to hierarchical behavior. This is a first step for the generalization of extensive behavior as described by real power laws to the case of complex exponents and the study of hierarchical behavior.


Science ◽  
2020 ◽  
Vol 369 (6503) ◽  
pp. 550-553 ◽  
Author(s):  
Bing Yang ◽  
Hui Sun ◽  
Chun-Jiong Huang ◽  
Han-Yi Wang ◽  
Youjin Deng ◽  
...  

Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavior of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of 1.9−0.4+1.7×10−3kB. The atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993 ± 0.001 for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and may enable the creation of large-scale entanglement.


2020 ◽  
Vol 124 (11) ◽  
Author(s):  
Álvaro M. Alhambra ◽  
Jonathon Riddell ◽  
Luis Pedro García-Pintos

Physica ◽  
1971 ◽  
Vol 52 (1) ◽  
pp. 29-44 ◽  
Author(s):  
R. Balescu ◽  
L. Brenig ◽  
J. Wallenborn

2019 ◽  
Vol 7 (5) ◽  
Author(s):  
Luis A. Colmenarez ◽  
Paul A. McClarty ◽  
Masud Haque ◽  
David J. Luitz

Ergodic quantum many-body systems satisfy the eigenstate thermalization hypothesis (ETH). However, strong disorder can destroy ergodicity through many-body localization (MBL) – at least in one dimensional systems – leading to a clear signal of the MBL transition in the probability distributions of energy eigenstate expectation values of local operators. For a paradigmatic model of MBL, namely the random-field Heisenberg spin chain, we consider the full probability distribution of eigenstate correlation functions across the entire phase diagram. We find gaussian distributions at weak disorder, as predicted by pure ETH. At intermediate disorder – in the thermal phase – we find further evidence for anomalous thermalization in the form of heavy tails of the distributions. In the MBL phase, we observe peculiar features of the correlator distributions: a strong asymmetry in S_i^z S_{i+r}^zSizSi+rz correlators skewed towards negative values; and a multimodal distribution for spin-flip correlators. A quantitative quasi-degenerate perturbation theory calculation of these correlators yields a surprising agreement of the full distribution with the exact results, revealing, in particular, the origin of the multiple peaks in the spin-flip correlator distribution as arising from the resonant and off-resonant admixture of spin configurations. The distribution of the S_i^zS_{i+r}^zSizSi+rz correlator exhibits striking differences between the MBL and Anderson insulator cases.


2021 ◽  
pp. 49-66
Author(s):  
Robert W. Batterman

This chapter begins the argument that the best way to understand the relations of relative autonomy between theories at different scales is through a mesoscale hydrodynamic description of many-body systems. It focuses on the evolution of conserved quantities of those systems in near, but out of equilibrium states. A relatively simple example is presented of a system of spins where the magnetization is the conserved quantity of interest. The chapter introduces the concepts of order parameters, of local quantities, and explains why we should be focused on the gradients of densities that inhabit the mesoscale between the scale of the continuum and that of the atomic. It introduces the importance of correlation functions and linear response.


Sign in / Sign up

Export Citation Format

Share Document