scholarly journals Study of mechanical properties under compression failure in reinforced composite materials produced by additive manufacturing

2018 ◽  
Vol 1126 ◽  
pp. 012005 ◽  
Author(s):  
J D Argüello-Bastos ◽  
O A González-Estrada ◽  
C A Ruiz-Florián ◽  
A D Pertuz-Comas ◽  
E D V-Niño
2015 ◽  
Vol 766-767 ◽  
pp. 167-172 ◽  
Author(s):  
R. Bhoopathi ◽  
C. Deepa ◽  
G. Sasikala ◽  
M. Ramesh

Due to desirable properties and its role of natural and manmade fibers reinforced composite materials are growing in a faster rate in the field of engineering and technology. Now-a-days the treated natural composites are serves better in terms of corrosive resistance, and other desirable properties when compared to the traditional materials. The main aim of this experimental study is to fabricate and investigate the mechanical properties such as tensile strengths, flexural strengths and impact strengths of NaOH treated and hemp-banana-glass fibers reinforced hybrid composites. From the experimental results, it has been noted that the treated hemp-banana-glass fibers reinforced hybrid epoxy composites exhibited superior properties and used as an alternate material for synthetic fiber reinforced composite materials. Morphological studies are carried out to analyze the interfacial characteristics, internal structures, fiber failure mode and fractured surfaces by using scanning electron microscopy (SEM) analysis.


2021 ◽  
Vol 11 (18) ◽  
pp. 8545
Author(s):  
So-Ree Hwang ◽  
Min-Soo Park

Additive manufacturing, commonly called 3D printing, has been studied extensively because it can be used to fabricate complex structures; however, polymer-based 3D printing has limitations in terms of implementing certain functionalities, so it is limited in the production of conceptual prototypes. As such, polymer-based composites and multi-material 3D printing are being studied as alternatives. In this study, a DLP 3D printer capable of printing multiple composite materials was fabricated using a movable separator and structures with various properties were fabricated by selectively printing two composite materials. After the specimen was fabricated based on the ASTM, the basic mechanical properties of the structure were compared through a 3-point bending test and a ball rebound test. Through this, it was shown that structures with various mechanical properties can be fabricated using the proposed movable-separator-based DLP process. In addition, it was shown that this process can be used to fabricate anisotropic structures, whose properties vary depending on the direction of the force applied to the structure. By fabricating multi-joint grippers with varying levels of flexibility, it was shown that the proposed process can be applied in the fabrication of soft robots as well.


2012 ◽  
Vol 182-183 ◽  
pp. 307-310
Author(s):  
Fang Huang

Composite material has many excellent properties, current, receives special attention was paid to its mechanical properties. By adding the dispersed phase can make the strength of the composites than did not join the dispersed phase of pure matrix material strength several times or several times. Composite materials are often called fiber ( or other dispersed phase) reinforced composite materials.


2019 ◽  
Vol 1 (1) ◽  
pp. 276-280
Author(s):  
Lenka Markovičová ◽  
Viera Zatkalíková ◽  
Patrícia Hanusová

Abstract Carbon fiber reinforced composite materials offer greater rigidity and strength than any other composites, but are much more expensive than e.g. glass fiber reinforced composite materials. Continuous fibers in polyester give the best properties. The fibers carry mechanical loads, the matrix transfers the loads to the fibers, is ductile and tough, protect the fibers from handling and environmental damage. The working temperature and the processing conditions of the composite depend on the matrix material. Polyesters are the most commonly used matrices because they offer good properties at relatively low cost. The strength of the composite increases along with the fiber-matrix ratio and the fiber orientation parallel to the load direction. The longer the fibers, the more effective the load transfer is. Increasing the thickness of the laminate leads to a reduction in the strength of the composite and the modulus of strength, since the likelihood of the presence of defects increases. The aim of this research is to analyze the change in the mechanical properties of the polymer composite. The polymer composite consists of carbon fibers and epoxy resin. The change in compressive strength in the longitudinal and transverse directions of the fiber orientation was evaluated. At the same time, the influence of the wet environment on the change of mechanical properties of the composite was evaluated.


Sign in / Sign up

Export Citation Format

Share Document