scholarly journals Computational studying energy and spectral parameters of hadronic (pionic) atoms with account of the strong pion-nuclear interaction

2018 ◽  
Vol 1136 ◽  
pp. 012004
Author(s):  
Yu V Dubrovskaya ◽  
L A Vitavetskaya ◽  
I N Serga ◽  
A N Bystryantseva ◽  
D A Mironenko
2021 ◽  
pp. 78-85
Author(s):  
Yu. Dubrovskaya ◽  
O. Khetselius ◽  
I. Serga ◽  
Yu. Chernyakova

A new theoretical approach to energy and spectral parameters of the hadronic (pionic and kaonic) atoms in the excited states with precise accounting for the relativistic, radiation and nuclear effects is presented. There are presented data of calculation of the energy and spectral parameters for pionic atoms of the 93Nb, 173Yb, 181Ta , 197Au, with accounting for the radiation (vacuum polarization), nuclear (finite size of a nucleus ) and the strong pion-nuclear interaction corrections. The measured values of the Berkley, CERN and Virginia laboratories and alternative data based on other versions of the Klein-Gordon-Fock theories with taking into account for a finite size of the nucleus in the model uniformly charged sphere and the standard Uhling-Serber potential approach for account for the radiation corrections are listed too.


2021 ◽  
pp. 60-67
Author(s):  
E. Ternovsky ◽  
A. Mykhailov

It is presented  a new relativistic approach to computing the spectral parameters of multicharged ions in plasmas for different values of the plasmas screening (Debye) parameter (respectively, electron density, temperature). The approach used is based on the generalized relativistic energy approach combined with the optimized relativistic many-body perturbation theory (RMBPT) with the Dirac-Debye shielding model as zeroth approximation, adapted for application to study the spectral parameters of ions in plasmas. An electronic Hamiltonian for N-electron ion in plasmas is added by the Yukawa-type electron-electron and nuclear interaction potential. The special exchange potential as well as the electron density with dependence upon the temperature are used.


2020 ◽  
pp. 81-85
Author(s):  
E. P. Popova ◽  
O. T. Bogova ◽  
S. N. Puzin ◽  
D. A. Sychyov ◽  
V. P. Fisenko

Spectral analysis of heart rate variability gives an idea of the role of the autonomic nervous system in the regulation of chronotropic heart function. This method can be used to evaluate the effectiveness of drug therapy. Drug therapy should be carried out taking into account the individual clinical form of atrial fibrillation. Information about the vegetative status of the patient will undoubtedly increase the effectiveness of treatment. In this study, spectral parameters were studied in patients with newly diagnosed atrial fibrillation. The effect of antiarrhythmic drug class III amiodarone on the spectral parameters of heart rate variability was studied.


2018 ◽  
Vol 77 (3) ◽  
pp. 187-198
Author(s):  
V. N. Oleynikov ◽  
S. V. Doroshenko ◽  
V. D. Pshenichny
Keyword(s):  

2019 ◽  
Vol 199 ◽  
pp. 01014
Author(s):  
K. Piscicchia ◽  
M. Bazzi ◽  
G. Belloti ◽  
A. M. Bragadireanu ◽  
D. Bosnar ◽  
...  

The AMADEUS experiment at the DAΦNE collider of LNF-INFN deals with the investigation of the at-rest, or low-momentum, K− interactions in light nuclear targets, with the aim to constrain the low energy QCD models in the strangeness sector. The 0 step of the experiment consisted in the reanalysis of the 2004/2005 KLOE data, exploiting K− absorptions in H, 4He, 9Be and 12C, leading to the first invariant mass spectroscopic study with very low momentum (about 100 MeV) in-flight K− captures. With AMADEUS step 1 a dedicated pure Carbon target was implemented in the central region of the KLOE detector, providing a high statistic sample of pure at-rest K− nuclear interaction. The first measurement of the non-resonant transition amplitude $\left| {{A_{{K^ - }n \to \Lambda {\pi ^ - }}}} \right|$ at $\sqrt s = 33\,MeV$ below the K̄N threshold is presented, in relation with the Λ(1405) properties studies. The analysis procedure adopted in the serarch for K− multi-nucleon absorption cross sections and Branching Ratios will be also described.


Sign in / Sign up

Export Citation Format

Share Document