scholarly journals Constraining convection parameters from the light curve shapes of pulsating white dwarf stars: the cases of EC 14012-1446 and WD 1524-0030

2008 ◽  
Vol 118 ◽  
pp. 012057 ◽  
Author(s):  
G Handler ◽  
J L Provencal ◽  
M H Montgomery ◽  
E Romero-Colmenero ◽  
K Sanchawala ◽  
...  
1989 ◽  
Vol 114 ◽  
pp. 109-114 ◽  
Author(s):  
R. Edward Nather

AbstractThe history of our galaxy and the detailed history of star formation in the early universe is written in the white dwarf stars. Recently we have learned how to reach beneath their exposed surfaces by observing white dwarfs that are intrinsic variables. We use the stellar equivalent of seismology to probe their interiors, and thus to unravel the history they hold inside. We have designed and placed into operation an observational technique that uses the whole earth as a telescope platform, defeating the effects of daylight which, until now, had seriously limited the length of a single light curve, and therefore the amount of information we could hope to extract from it. This paper describes our new telescope and presents preliminary results from our first observing run in March, 1988.


1989 ◽  
Vol 114 ◽  
pp. 258-262
Author(s):  
P. Brassard ◽  
F. Vesemael ◽  
G. Fontaine

The ZZ Ceti star L 19-2 is a stable pulsator whose light curve has now been deciphered with the help of over 300 hours of white light, high-speed photometry (O’Donoghue and Vamer 1982, 1987, hereafter ODV). The analysis indeed reveals the presence in the light curve of five coherent oscillations, with periods ranging from 113s to 350s. Among those, the 192s oscillation possesses three components, almost equally separated in frequency. Most importantly, the slight, but statistically significant, inequality in the frequency spacing of the triplet has been interpreted by these authors as second-order splitting of rotationally-perturbed g-mode oscillations. And indeed, the measured splitting appears consistent with the theoretical predictions of Chlebowski (1978), which are based on somewhat archaic white dwarf models. As pointed out by ODV, it is clearly of great interest to investigate 1) to what extent theoretical predictions based on more realistic, current-generation white dwarf models agree with ODVs identification, and 2) to what extent such second order effects can, eventually, be used to identify individual pulsation modes or constrain the structural parameters of variable white dwarf stars. Motivated by these questions, we have initiated a study of second-order effects due to rotation in ZZ Ceti stars, and we report here the first results of this program.


1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


2008 ◽  
Author(s):  
M. Christova ◽  
N. F. Allard ◽  
J. F. Kielkopf ◽  
D. Homeier ◽  
F. Allard ◽  
...  

2004 ◽  
Vol 602 (2) ◽  
pp. L109-L112 ◽  
Author(s):  
D. E. Winget ◽  
D. J. Sullivan ◽  
T. S. Metcalfe ◽  
S. D. Kawaler ◽  
M. H. Montgomery

2017 ◽  
Vol 598 ◽  
pp. A109 ◽  
Author(s):  
N. Giammichele ◽  
S. Charpinet ◽  
P. Brassard ◽  
G. Fontaine

2018 ◽  
Vol 616 ◽  
pp. A80 ◽  
Author(s):  
Julieta P. Sánchez Arias ◽  
Alejandra D. Romero ◽  
Alejandro H. Córsico ◽  
Ingrid Pelisoli ◽  
Victoria Antoci ◽  
...  

Context. Pulsating extremely low-mass pre-white dwarf stars (pre-ELMV), with masses between ~0.15 M⊙ and ~0.30 M⊙, constitute a new class of variable stars showing g- and possibly p-mode pulsations with periods between 320 and 6000 s (frequencies between 14.4 and 270 c/d), driven by the κ mechanism operating in the second He ionization zone. On the other hand, main sequence δ Scuti stars, with masses between 1.2 and 2.5 M⊙, pulsate in low-order g and p modes with periods in the range [700–28 800] s (frequencies in the range [3–123] c/d), driven by the κ mechanism operating in the He II ionization zone and the turbulent pressure acting in the HI ionization layer. Interestingly enough, the instability strips of pre-ELM white dwarf and δ Scuti stars nearly overlap in the Teff vs. log g diagram, leading to a degeneracy when spectroscopy is the only tool to classify the stars and pulsation periods only are considered. Aims. Pre-ELM white dwarf and δ Scuti stars are in very different stages of evolution and therefore their internal structure is very distinct. This is mirrored in their pulsational behavior, thus employing asteroseismology should allow us to distinguish between these groups of stars despite their similar atmospheric parameters. Methods. We have employed adiabatic and non-adiabatic pulsation spectra for models of pre-ELM white dwarfs and δ Scuti stars, and compare their pulsation periods, period spacings, and rates of period change. Results. Unsurprisingly, we found substantial differences in the period spacing of δ Scuti and pre-ELM white dwarf models. Even when the same period range is observed in both classes of pulsating stars, the modes have distinctive signature in the period spacing and period difference values. For instance, the mean period difference of p-modes of consecutive radial orders for δ Scuti model are at least four times longer than the mean period spacing for the pre-ELM white dwarf model in the period range [2000–4600] s (frequency range [18.78–43.6] c/d). In addition, the rate of period change is two orders of magnitudes larger for the pre-ELM white dwarfs compared to δ Scuti stars. In addition, we also report the discovery of a new variable star, SDSSJ075738.94+144827.50, located in the region of the Teff versus log g diagram where these two kind of stars coexist. Conclusions.The characteristic spacing between modes of consecutive radial orders (p as well as g modes) and the large differences found in the rates of period change for δ Scuti and pre-ELM white dwarf stars suggest that asteroseismology can be employed to discriminate between these two groups of variable stars. Furthermore, we found that SDSSJ075738.94+144827.50 exhibits a period difference between p modes characteristic of a δ Sct star, assuming consecutive radial order for the observed periods.


1990 ◽  
Vol 53 (7) ◽  
pp. 837-915 ◽  
Author(s):  
D Koester ◽  
G Chanmugam

Sign in / Sign up

Export Citation Format

Share Document