scholarly journals Texture Analysis on the AZ31 Magnesium Alloy Using Neutron Diffraction Method

2020 ◽  
Vol 1436 ◽  
pp. 012061
Author(s):  
Tri Hardi Priyanto ◽  
Andon Insani ◽  
Rifai Muslih ◽  
Bharoto
2006 ◽  
Vol 524-525 ◽  
pp. 697-702 ◽  
Author(s):  
Shinobu Okido ◽  
Hiroshi Suzuki ◽  
K. Saito

Residual stress generated in Type-316 austenitic stainless steel butt-weld jointed by Inconel-182 was measured using a neutron diffraction method and compared with values calculated using FEM analysis. The measured values of Type-316 austenitic stainless steel as base material agreed well with the calculated ones. The diffraction had high intensity and a sharp profile in the base metal. However, it was difficult to measure the residual stress at the weld metal due to very weak diffraction intensities. This phenomenon was caused by the texture in the weld material generated during the weld procedure. As a result, this texture induced an inaccurate evaluation of the residual stress. Procedures for residual stress evaluation to solve this textured material problem are discussed in this paper. As a method for stress evaluation, the measured strains obtained from a different diffraction plane with strong intensity were modified with the ratio of the individual elastic constant. The values of residual stress obtained using this method were almost the same as those of the standard method using Hooke’s law. Also, these residual stress values agreed roughly with those from the FEM analysis. This evaluation method is effective for measured samples with a strong texture like Ni-based weld metal.


1991 ◽  
Vol 46 (11) ◽  
pp. 951-954
Author(s):  
W.-M. Kuschke ◽  
P. Lamparter ◽  
S. Steeb

AbstractUsing neutron diffraction as well as the method of isotopic substitution the partial Bhatia-Thornton as well as the partial Faber-Ziman structure factors of amorphous Ni25Zr75 were determined. A compound forming tendency was found. The atomic distances, partial coordination numbers, and the chemical short range order parameter are evaluated.


2019 ◽  
Vol 33 (15) ◽  
pp. 1950149 ◽  
Author(s):  
N. T. Mamedov ◽  
S. H. Jabarov ◽  
D. P. Kozlenko ◽  
N. A. Ismayilova ◽  
M. Yu. Seyidov ◽  
...  

We have investigated the crystal structure of strongly anisotropic semiconductor TlInSe2 by neutron diffraction method under high pressure upto P = 3.3 GPa. It was shown that the tetragonal phase of TlInSe2 crystal (the space group I4/mcm) is stable in the whole investigated range of pressure. The lattice parameters dependence of the pressure and the unit cell volume are obtained, the linear coefficients of compressibility and the bulk moduli are calculated. At the low pressure, obtained value of compressibility for the lattice parameter a is k[Formula: see text] = 14.23 × 10[Formula: see text] GPa[Formula: see text] and for c is k[Formula: see text] = 5.93 × 10[Formula: see text] GPa[Formula: see text]. Obtained values for bulk modulus B0 and its pressure derivative B[Formula: see text] in tetragonal phase are 30(7) GPa and 4(1), respectively.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 348 ◽  
Author(s):  
Wei Wu ◽  
Alexandru Stoica ◽  
Dunji Yu ◽  
Matthew Frost ◽  
Harley Skorpenske ◽  
...  

The tensile twinning and detwinning behaviors of a wrought magnesium alloy have been investigated during in situ four-point bending using the state-of-the-art high spatial resolution pinhole neutron diffraction (PIND) method. The PIND method allowed us to resolve the tensile twinning/detwinning and lattice strain distributions across the bending sample during a loading-unloading sequence with a 0.5 mm step size. It was found that the extensive tensile twinning and detwinning occurred near the compression surface, while no tensile twinning behavior was observed in the middle layer and tension side of the bending sample. During the bending, the neutral plane shifted from the compression side to the tension side. Compared with the traditional neutron diffraction mapping method, the PIND method provides more detailed information inside the bending sample due to a higher spatial resolution.


2020 ◽  
Vol 46 (10) ◽  
pp. 15889-15896 ◽  
Author(s):  
Liang Cheng ◽  
Rui Gao ◽  
Biaojie Yan ◽  
Changsheng Zhang ◽  
Ruiwen Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document