scholarly journals Autonomous navigation data integrity monitoring of satellite radio navigation systems based on residual method

2020 ◽  
Vol 1546 ◽  
pp. 012016
Author(s):  
A V Ivanov ◽  
D V Boykov ◽  
O V Trapeznikova ◽  
A P Pudovkin ◽  
E V Trapeznikov
Author(s):  
Vladimir T. Minligareev ◽  
Elena N. Khotenko ◽  
Vadim V. Tregubov ◽  
Tatyana V. Sazonova ◽  
Vaclav L. Kravchenok

The analysis an influence of reflections from the underlying surface, atmospheric noise, the Earth’s surface, cosmic noise and signal attenuation of the signal the atmosphere, as well as the flight dynamics of the aircraft (AC) on the signal/noise ratio and, accordingly, on the accuracy of AC navigation definitions by using consumer equipment of the satellite radio navigation systems. The analysis an influence of reflections from the underlying surface on the equipment operation quality of the satellite radio navigation systems consumers is carried out by using the Beckman model, in accordance with the earth’s surface appears to consist of flat faces with an arbitrary slope. It is noted that reflections from the underlying surface have a greater effect on the quality of functioning of the consumer equipment of the satellite radio navigation systems in the tracking signal mode than in the detection mode. In this case, the influence of reflections increases with decreasing flight altitude and an increase in the angle of heel of the AC in the direction of the navigation spacecraft.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2947
Author(s):  
Ming Hua ◽  
Kui Li ◽  
Yanhong Lv ◽  
Qi Wu

Generally, in order to ensure the reliability of Navigation system, vehicles are usually equipped with two or more sets of inertial navigation systems (INSs). Fusion of navigation measurement information from different sets of INSs can improve the accuracy of autonomous navigation effectively. However, due to the existence of misalignment angles, the coordinate axes of different systems are usually not in coincidence with each other absolutely, which would lead to serious problems when integrating the attitudes information. Therefore, it is necessary to precisely calibrate and compensate the misalignment angles between different systems. In this paper, a dynamic calibration method of misalignment angles between two systems was proposed. This method uses the speed and attitude information of two sets of INSs during the movement of the vehicle as measurements to dynamically calibrate the misalignment angles of two systems without additional information sources or other external measuring equipment, such as turntable. A mathematical model of misalignment angles between two INSs was established. The simulation experiment and the INSs vehicle experiments were conducted to verify the effectiveness of the method. The results show that the calibration accuracy of misalignment angles between the two sets of systems can reach to 1″ while using the proposed method.


2021 ◽  
Author(s):  
Hao Wu ◽  
Jiangming Jin ◽  
Jidong Zhai ◽  
Yifan Gong ◽  
Wei Liu

Data ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 4 ◽  
Author(s):  
Viacheslav Moskalenko ◽  
Alona Moskalenko ◽  
Artem Korobov ◽  
Viktor Semashko

Trainable visual navigation systems based on deep learning demonstrate potential for robustness of onboard camera parameters and challenging environment. However, a deep model requires substantial computational resources and large labelled training sets for successful training. Implementation of the autonomous navigation and training-based fast adaptation to the new environment for a compact drone is a complicated task. The article describes an original model and training algorithms adapted to the limited volume of labelled training set and constrained computational resource. This model consists of a convolutional neural network for visual feature extraction, extreme-learning machine for estimating the position displacement and boosted information-extreme classifier for obstacle prediction. To perform unsupervised training of the convolution filters with a growing sparse-coding neural gas algorithm, supervised learning algorithms to construct the decision rules with simulated annealing search algorithm used for finetuning are proposed. The use of complex criterion for parameter optimization of the feature extractor model is considered. The resulting approach performs better trajectory reconstruction than the well-known ORB-SLAM. In particular, for sequence 7 from the KITTI dataset, the translation error is reduced by nearly 65.6% under the frame rate 10 frame per second. Besides, testing on the independent TUM sequence shot outdoors produces a translation error not exceeding 6% and a rotation error not exceeding 3.68 degrees per 100 m. Testing was carried out on the Raspberry Pi 3+ single-board computer.


Sign in / Sign up

Export Citation Format

Share Document