scholarly journals New insights into high temperature superconductivity from a computational solution of the two-dimensional Hubbard model

2005 ◽  
Vol 16 ◽  
pp. 257-268
Author(s):  
T A Maier ◽  
J B White ◽  
M Jarrell ◽  
P Kent ◽  
T C Schulthess
2020 ◽  
Vol 34 (19n20) ◽  
pp. 2040046
Author(s):  
T. Yanagisawa ◽  
M. Miyazaki ◽  
K. Yamaji

It is important to understand the phase diagram of electronic states in the CuO2 plane to clarify the mechanism of high-temperature superconductivity. We investigate the ground state of electronic models with strong correlation by employing the optimization variational Monte Carlo method. We consider the two-dimensional Hubbard model as well as the three-band [Formula: see text]–[Formula: see text] model. We use the improved wave function that takes account of inter-site electron correlation to go beyond the Gutzwiller wave function. The ground state energy is lowered considerably, which now gives the best estimate of the ground state energy for the two-dimensional Hubbard model. The many-body effect plays an important role as an origin of spin correlation and superconductivity in correlated electron systems. We investigate the competition between the antiferromagnetic state and superconducting state by varying the Coulomb repulsion [Formula: see text], the band parameter [Formula: see text] and the electron density [Formula: see text] for the Hubbard model. We show phase diagrams that include superconducting and antiferromagnetic phases. We expect that high-temperature superconductivity occurs near the boundary between antiferromagnetic phase and superconducting one. Since the three-band [Formula: see text]–[Formula: see text] model contains many-band parameters, high-temperature superconductivity may be more likely to occur in the [Formula: see text]–[Formula: see text] model than in single-band models.


1996 ◽  
Vol 10 (08) ◽  
pp. 341-346 ◽  
Author(s):  
A. BELKASRI ◽  
J.L. RICHARD

Recently in many works on the mechanism of high temperature superconductivity (see for example Refs. 1–6), quasi-averages like <ck↑c−k↓> were considered even in the case of a dimension less or equal two. But it is well known from the old work of Hohenberg7 that these quasi-averages are zero at T≠0 in case of 1 and 2 dimensions. In this communication we generalize the Hohenberg’s result to any kind of Hubbard type model on lattice and prove that in the case of quasi-two-dimension, the theorem of Hohenberg is not in contradiction with having <ck↑c−k↓>≠0 (at T≠0). In practice this makes sense to compare the data for a thin film (which can be considered as quasi-2D system) to the theoretical analysis based on quasi-two-dimensional models, but not for strictly two-dimensional case.


1990 ◽  
Vol 04 (21) ◽  
pp. 1325-1340 ◽  
Author(s):  
DAVID KO

The discovery of high temperature superconductivity has motivated a vigorous study of the physics of Hubbard systems. Here, the properties of the spin aspects of the Hubbard system in two-dimension, in the strong coupling limit, are briefly reviewed, with the basic ideas, some of the fundamental questions and the state of the art introduced.


1991 ◽  
Vol 43 (10) ◽  
pp. 8623-8626 ◽  
Author(s):  
T. Wang ◽  
K. M. Beauchamp ◽  
D. D. Berkley ◽  
B. R. Johnson ◽  
J.-X. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document