scholarly journals Industrial Scale Bioprocess Simulation for Ganoderma Lucidum Production using Superpro Designer

2020 ◽  
Vol 1655 ◽  
pp. 012077
Author(s):  
J Araque ◽  
L Niño ◽  
G Gelves
2020 ◽  
pp. 1217-1236
Author(s):  
Rajender Singh ◽  
Mamta Chauhan

Different types of edible mushrooms like Agaricus, bisporus, A. bitoriqus, Pleurotus spp., Volvariella volvacea, Lentinula edodes, Calocybe indica, Flamullina, Ganoderma lucidum etc. are cultivated in industrial scale. Majority of edible fungi secretes extracellular Ligninocellulolytic enzymes like Laccase, lignin peroxidase, manganese peroxidase, cellulase etc. for effective conversion of ligninocellulolytic substrate to compositing form which led to fruiting of mushrooms. Consequently, an adequate disposal method is needed for the high quantities of spent mushroom substrate (SMS) generated in this agro-food industrial activity. On the other side, textile industry among the largest water consuming industries in the world and approximately, 10,000 different dyes and pigments are used at industrial scale. It is estimated that nearly 40% of the total dyes used in the dyeing process may find their way in wastewater. So, there is an attempt to utilize the ligninolytic enzymes rich SMS of different mushroom for efficiently biodegradation of textile wastewater & polyaromatic pollutants.


Author(s):  
Rajender Singh ◽  
Mamta Chauhan

Different types of edible mushrooms like Agaricus, bisporus, A. bitoriqus, Pleurotus spp., Volvariella volvacea, Lentinula edodes, Calocybe indica, Flamullina, Ganoderma lucidum etc. are cultivated in industrial scale. Majority of edible fungi secretes extracellular Ligninocellulolytic enzymes like Laccase, lignin peroxidase, manganese peroxidase, cellulase etc. for effective conversion of ligninocellulolytic substrate to compositing form which led to fruiting of mushrooms. Consequently, an adequate disposal method is needed for the high quantities of spent mushroom substrate (SMS) generated in this agro-food industrial activity. On the other side, textile industry among the largest water consuming industries in the world and approximately, 10,000 different dyes and pigments are used at industrial scale. It is estimated that nearly 40% of the total dyes used in the dyeing process may find their way in wastewater. So, there is an attempt to utilize the ligninolytic enzymes rich SMS of different mushroom for efficiently biodegradation of textile wastewater & polyaromatic pollutants.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
JL Ríos ◽  
G Schinella ◽  
S Mosca ◽  
E Cienfuegos-Jovellanos ◽  
MA Pasamar ◽  
...  

TAPPI Journal ◽  
2015 ◽  
Vol 14 (11) ◽  
pp. 689-694
Author(s):  
QINGZHI MA ◽  
QI WANG ◽  
CHU WANG ◽  
NIANJIE FENG ◽  
HUAMIN ZHAI

The effect of oxygen (O2)-delignified pine kraft pulp pretreatment by high-purity, thermostable, and alkaline-tolerant xylanases on elemental chlorine free (ECF) bleaching of O2-delignification kraft pulp was studied. The study found that xylanase pretreatment preserved the intrinsic viscosity and yield of O2-delignified pulp while causing about 7% of delignification with high delignification selectivity. The xylanases with high purity, higher thermostability (75°C~80°C) in highly alkaline media (pH 8.0~9.5) could be applied on an industrial scale. Pulp pretreatment by the high-purity, thermostable, and alkaline tolerant xylanases could improve pulp brightness or reduce the chlorine dioxide (ClO2) consumption. In a D0ED1D2 bleaching sequence using the same amount of ClO2, the xylanase-pretreated pulp obtained a higher brightness (88.2% vs. 89.7% ISO) at the enzyme dose of 2 U/g pulp; or for the same brightness as control (88.2% ISO), the ClO2 dosage in the D0 stage was reduced by 27%, which represents a 16% savings in total ClO2 used for bleaching.


2005 ◽  
Vol 7 (1-2) ◽  
pp. 263-280 ◽  
Author(s):  
Siu Wai Chiu ◽  
Vivien Wing Yan Luk ◽  
Stephen Yu ◽  
Peggy Lee ◽  
Natalie Wai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document