Effective Management of Agro-Industrial Residues as Composting in Mushroom Industry and Utilization of Spent Mushroom Substrate for Bioremediation

2020 ◽  
pp. 1217-1236
Author(s):  
Rajender Singh ◽  
Mamta Chauhan

Different types of edible mushrooms like Agaricus, bisporus, A. bitoriqus, Pleurotus spp., Volvariella volvacea, Lentinula edodes, Calocybe indica, Flamullina, Ganoderma lucidum etc. are cultivated in industrial scale. Majority of edible fungi secretes extracellular Ligninocellulolytic enzymes like Laccase, lignin peroxidase, manganese peroxidase, cellulase etc. for effective conversion of ligninocellulolytic substrate to compositing form which led to fruiting of mushrooms. Consequently, an adequate disposal method is needed for the high quantities of spent mushroom substrate (SMS) generated in this agro-food industrial activity. On the other side, textile industry among the largest water consuming industries in the world and approximately, 10,000 different dyes and pigments are used at industrial scale. It is estimated that nearly 40% of the total dyes used in the dyeing process may find their way in wastewater. So, there is an attempt to utilize the ligninolytic enzymes rich SMS of different mushroom for efficiently biodegradation of textile wastewater & polyaromatic pollutants.

Author(s):  
Rajender Singh ◽  
Mamta Chauhan

Different types of edible mushrooms like Agaricus, bisporus, A. bitoriqus, Pleurotus spp., Volvariella volvacea, Lentinula edodes, Calocybe indica, Flamullina, Ganoderma lucidum etc. are cultivated in industrial scale. Majority of edible fungi secretes extracellular Ligninocellulolytic enzymes like Laccase, lignin peroxidase, manganese peroxidase, cellulase etc. for effective conversion of ligninocellulolytic substrate to compositing form which led to fruiting of mushrooms. Consequently, an adequate disposal method is needed for the high quantities of spent mushroom substrate (SMS) generated in this agro-food industrial activity. On the other side, textile industry among the largest water consuming industries in the world and approximately, 10,000 different dyes and pigments are used at industrial scale. It is estimated that nearly 40% of the total dyes used in the dyeing process may find their way in wastewater. So, there is an attempt to utilize the ligninolytic enzymes rich SMS of different mushroom for efficiently biodegradation of textile wastewater & polyaromatic pollutants.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 892
Author(s):  
Xuefei Yang ◽  
Víctor López-Grimau

A hybrid Moving Bed Biofilm Reactor—Membrane Bioreactor (MBBR-MBR) was developed for the treatment of wastewater from a Spanish textile company. Compared with conventional activated sludge (CAS) treatment, the feasibility of this hybrid system to reduce economic and environmental impact on an industrial scale was conducted. The results showed that, technically, the removal efficiency of COD, TSS and color reached 93%, 99% and 85%, respectively. The newly dyed fabrics performed with the treated wastewater were qualified under the standards of the textile industry. Economically, the values of Capital Expenditure (CAPEX) calculated for the hybrid MBBR-MBR system are profitable because of the reduction in Operational Expenditure (OPEX) when compared with CAS treatment, due to the lower effluent discharge tax thanks to the higher quality of the effluent and the decolorizing agent saved. The result of Net Present Value (NPV) and the Internal Rate of Return (IRR) of 18% suggested that MBBR-MBR is financially applicable for implantation into the industrial scale. The MBBR-MBR treatment also showed lower environmental impacts than the CAS process in the life cycle assessment (LCA) study, especially in the category of climate change, thanks to the avoidance of using extra decolorizing agent, a synthetic product based on a triamine.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 157
Author(s):  
Galina Makarenkova ◽  
Valda Balode ◽  
Dzintra Zala ◽  
Elina Azena ◽  
Alexander Rapoport ◽  
...  

Lentinula edodes 3565 and Ganoderma lucidum 9621 were compared for their ability to produce lignocellulolytic enzymes in submerged (SM) and surface liquid (SL) fermentation of hydrolysed colza straw lignin waste that remained after the production of furfural and bioethanol (CS lignin). Application of cultivated mushrooms to dispose of pretreated colza straw agricultural waste is an approach to decrease the quantity of residual lignin while simultaneously obtaining active substances, e.g., the ligninolytic enzyme complex from mycelium. The effect of adding CS lignin to culture media on the yield of L. edodes and G. lucidum mycelium and extracellular laccase activity was studied. It was revealed that the mycelial growth of G. lucidum on solid media was significantly improved by adding CS lignin. Laccase activity during SL cultivation of L. edodes on medium with CS lignin gradually increased over the experiment starting on day 21 and peaked at 520 U/mL on day 28. G. lucidum expressed the maximum laccase activity, 540 U/mL, during the first 14 days of mycelium SM cultivation. Extracellular laccase activity was enhanced about 35- to 40-fold at cultivation of L. edodes and about 10- to 15-fold in the case of G. lucidum by supplementing liquid culture media with CS lignin.


2016 ◽  
Vol 73 (10) ◽  
pp. 2332-2344 ◽  
Author(s):  
Muhammad Bilal ◽  
Munawar Iqbal ◽  
Hongbo Hu ◽  
Xuehong Zhang

Colored effluents from the textile industry have led to severe environmental pollution, and this has emerged as a global issue. The feasibility of ligninolytic enzymes for the detoxification and degradation of textile wastewater was investigated. Ganoderma lucidum crude ligninolytic enzymes extract (MnP 717.7, LiP 576.3, and Laccase 323.2 IU/mL) was produced using solid-state culture using wheat bran as substrate. The biodegradation treatment efficiency was evaluated on the basis of degradation and detoxification of textile effluents. Standard bioassays were employed for mutagenicity, cytotoxicity and phytotoxicity evaluation before and after biodegradation. The degradation of Masood Textile, Kalash Textile, Khyber Textile and Sitara Textile effluents was achieved up to 87.29%, 80.17%, 77.31% and 69.04%, respectively. The biochemical oxygen demand, chemical oxygen demand, total suspended solids and total organic carbon were improved considerably as a result of biodegradation of textile effluents, which were beyond the permissible limits established by the National Environmental Quality Standards before treatment. The cytotoxicity (Allium cepa, hemolytic, Daphnia magna and brine shrimp), mutagenicity (Ames TA98 and TA100) and phytotoxicity (Triticum aestivum) tests revealed that biodegradation significantly (P < 0.05) detoxifies the toxic agents in wastewater. Results revealed that biodegradation could possibly be used for remediation of textile effluents. However, detoxification monitoring is crucial and should always be used to evaluate the bio-efficiency of a treatment technique.


2016 ◽  
Vol 18 (12) ◽  
pp. 1141-1149 ◽  
Author(s):  
Thais Almeida de Menezes ◽  
Aline Simoes da Rocha Bispo ◽  
Maria Gabriela Bello Koblitz ◽  
Luciana Porto de Souza Vandenberghe ◽  
Helio Mitoshi Kamida ◽  
...  

1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


2013 ◽  
Vol 67 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Y. Mountassir ◽  
A. Benyaich ◽  
M. Rezrazi ◽  
P. Berçot ◽  
L. Gebrati

The objectives of this work were to carry out a complete characterization of textile wastewater, resulting from a textile unit located in the Marrakesh region. A physico-chemical characterization has been performed, focused on organic and toxicological aspects. The cladoceran Daphnia magna was used as the sensor organism and lethal concentration as a criterion to measure the toxicity of textile wastewater. The physico-chemical and toxicological status of a local textile effluent showed considerable values limitation, when compared to the European Union standard limit and Moroccan guide level and other studies. In view of those characteristics, the wastewater effluent from the textile industry should be considered to be treated before discharge to the environment.


2006 ◽  
Vol 58 (3) ◽  
pp. 179-182 ◽  
Author(s):  
Jelena Vukojevic ◽  
Mirjana Stajic ◽  
Sonja Duletic-Lausevic ◽  
Jasmina Simonic

The effect of initial medium pH on biomass, extracellular and intracellular polysaccharide, and ligninolytic enzyme production by Ganoderma lucidum was investigated at different pH values after 7 and 14 days of cultivation. Maximal production of biomass was recorded at pH 4.5 and 5.0; maximal production of extracellular polysaccharides at pH 7.0 and 3.0; and maximal production of intracellular polysaccharides at pH 7.0 and 5.5. Ligninolytic enzymes were not produced at any pH of the medium. Maximal biomass production was obtained on the 11th day of cultivation; maximal extracellular polysaccharide production on the 7th day; and maximal intracellular polysaccharide production on the 6th and 10th day of cultivation. .


2019 ◽  

<p>Wastewater from textile industry is considered one of the major environmental challenges due to the large volume of highly colored, polluted and toxic effluent. This study investigated the treatability of real textile wastewater by pilot-scale anoxic-aerobic Membrane Bioreactor (MBR) system without sludge wasting for operation period of 100 days. The proposed system was investigated under different Internal Recycle (IR) ratios and the impact of IR ratio on Total Organic Carbon (TOC), Total Nitrogen (TN) and Color removals were examined. Under IR ratios between anoxic and aerobic tanks of 0.0, 0.5 and 2.0, the respective average removal efficiency of TN was 20.9%,53.4% and 71.7%, whereas average color removal of 81%, 85% and 88%, respectively was noted. The results indicated that increase of recycle ratio from 0.5 to 2.0 enhanced TN removal to about 71% and color removal to above 85%. The IR between anoxic and aerobic tanks has a significant role in TN and color removal due its effect on the development of bacterial communities. On the other hand, the results indicate over 93% TOC removal, which was independent of IR ratio.</p>


Sign in / Sign up

Export Citation Format

Share Document