scholarly journals The study of radiation attenuation in disordered silver nanoparticles arrays formed by dry aerosol printing

2020 ◽  
Vol 1695 ◽  
pp. 012104
Author(s):  
K M Khabarov ◽  
A A Efimov ◽  
V V Ivanov
2020 ◽  
Vol 834 ◽  
pp. 37-41 ◽  
Author(s):  
Pavel V. Arsenov ◽  
Alexey A. Efimov ◽  
Kirill M. Khabarov ◽  
Denis V. Kornyushin ◽  
Victor V. Ivanov

This article presents a comparison of laser sintering of deposited nanoparticles obtained by two methods of aerosol jet printing. The first printing method was based on the use of silver nanoparticles in the form of microdroplets contained in nanoink. In the second method, dry nanoparticles were obtained as a result of gas-discharge synthesis without the use of solvents. The nanoparticles in both experiments were deposited on a glass substrate in the form of a line with a width of about 50 ± 5 μm and a height of about 1.0 ± 0.2 μm. Then, the obtained lines were sintered using laser radiation with a wavelength of 1064 nm. As a result of experiments on the deposition and sintering, it was found that the electrical resistivity of the lines of sintered nanoparticles in the form of nanoink and dry nanoparticles obtained in a gas discharge was 8.1 and 4.9 μΩ·cm, respectively. Thus, it has been demonstrated that laser sintering of nanoparticles obtained in a gas discharge makes it possible to achieve a lower specific resistance of lines than the method of aerosol printing using nanoink. In addition, the electrical resistivity of the lines of sintered nanoparticles obtained in a gas discharge is 3 times greater than the electrical resistivity of bulk silver, which is a sufficient result for the creation of conductive elements of printed electronics.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012147
Author(s):  
K M Khabarov ◽  
M Nouraldeen ◽  
A A Lizunova ◽  
M N Urazov ◽  
V V Ivanov

Abstract Optical properties and microstructure of samples formed by dry aerosol printing are studied. Silver nanoparticles flat layers of two types were formed on substrates surfaces and were investigated by a spectrophotometer, a scanning electron microscope, and a transmission electron microscope. It is shown that all microstructures support plasmon resonance on individual nanoparticles with the Q factor depending both on the width of the nanoparticles size distribution in the aerosol and on their tendency to agglomeration and aggregation.


2019 ◽  
Vol 1410 ◽  
pp. 012217 ◽  
Author(s):  
K M Khabarov ◽  
D V Kornyushin ◽  
B I Masnaviev ◽  
D N Tuzhilin ◽  
A A Efimov ◽  
...  

2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


Author(s):  
S. Rezaei-Zarchi ◽  
M. Taghavi-Foumani ◽  
S. Razavi Sheshdeh ◽  
M. Negahdary ◽  
G. Rahimi

2019 ◽  
Vol 29 (3) ◽  
Author(s):  
Mai Ngọc Tuan Anh

Silver nanoplates (SNPs) having different size were synthesized by a seed-mediated method. The seeds -silver nanoparticles with 4 – 6 nm diameters were synthesized first by reducing silver nitrate with sodium borohydride in the present of Trisodium Citrate and Hydrogen peroxide. Then these seeds were developed by continue reducing Ag\(^+\) ions with various amount of L-Ascorbic acid to form SNPs. Our analysis showed that the concentratrion of L-Ascorbic acid, a secondary reducing agent, played an important role to form SNPs. In addition, the size and in-plane dipole plasmon resonance wavelenght of silver nanoplates were increased when the concentration of added silver nitrate increased. The characterization of SNPs were studied by UV-Vis, FE-SEM, EDS and TEM methods.


Sign in / Sign up

Export Citation Format

Share Document