scholarly journals The structure of perturbations in boundary layer created by a pulsed electric arc in the transversal magnetic field

2020 ◽  
Vol 1698 ◽  
pp. 012032
Author(s):  
P N Kazanskii ◽  
I A Moralev ◽  
A Ya Kotvitskii
2020 ◽  
Vol 53 (42) ◽  
pp. 425203 ◽  
Author(s):  
Ivan Moralev ◽  
Pavel Kazanskii ◽  
Valentin Bityurin ◽  
Alexey Bocharov ◽  
Alexander Firsov ◽  
...  

2017 ◽  
Vol 829 ◽  
pp. 328-344 ◽  
Author(s):  
V. D. Borisevich ◽  
E. P. Potanin ◽  
J. Whichello

A model of a laminar viscous conducting flow, near a dielectric disc in a uniform magnetic field and in the presence of external rotation, is considered, where there is a uniform suction and an axial temperature gradient between the flow and the disc’s surface. It is assumed that the parameters of the suction or the magnetohydrodynamic (MHD) interaction are such that the nonlinear inertial terms, related to the circulation flow, are negligible in the differential equations of the MHD boundary layer on a rotating disc. Analysis of the motion and energy equations, taking the dependence of density on temperature into account, is carried out using the Dorodnitsyn transformation. The exact analytical solution for the boundary layer and heat transfer equations is obtained and analysed, neglecting the viscous and Joule dissipation. The dependence of the flow characteristics in the boundary layer on the rate of suction and the magnetic field induction is studied. It is shown that the direction of the radial flow in the boundary layer on a disc can be changed, not only by variation of the ratio between the angular velocities in the external flow and the boundary layer, but also by changing the ratio of the temperatures in these two flows, as well as by varying the hydrodynamic Prandtl number. The approximate calculation of a three-dimensional flow in a rotating cylinder with a braking disc (or lid) is carried out, demonstrating that a magnetic field slows the circulation velocity in a rotating cylinder.


2014 ◽  
Vol 14 (03) ◽  
pp. 1450039 ◽  
Author(s):  
O. ANWAR BÉG ◽  
M. FERDOWS ◽  
S. SHAMIMA ◽  
M. NAZRUL ISLAM

Laminar magnetohydrodynamic Marangoni-forced convection boundary layer flow of a water-based biopolymer nanofluid containing nanoparticles from a non-isothermal plate is studied. Magnetic induction effects are incorporated. A variety of nanoparticles are studied, specifically, silver, copper, aluminium oxide and titanium oxide. The Tiwari–Das model is utilized for simulating nanofluid effects. The normalized ordinary differential boundary layer equations (mass, magnetic field continuity, momentum, induced magnetic field and energy conservation) are solved subject to appropriate boundary conditions using Maple shooting quadrature. The influence of Prandtl number (Pr), magnetohydrodynamic body force parameter (β), reciprocal of magnetic Prandtl number (α) and nanofluid solid volume fraction (φ) on velocity, temperature and magnetic stream function distributions is investigated in the presence of strong Marangoni effects (ξ i.e., Marangoni parameter is set as unity). Magnetic stream function is accentuated with body force parameter. The flow is considerably decelerated as is magnetic stream function gradient, with increasing nanofluid solid volume fraction, whereas temperatures are significantly enhanced. Interesting features in the flow regime are explored. The study finds applications in the fabrication of complex biomedical nanofluids, biopolymers, etc.


2017 ◽  
Vol 5 (4RAST) ◽  
pp. 52-58
Author(s):  
Jalaja P ◽  
Venkataramana B.S ◽  
Naveen V ◽  
K.R. Jayakumar

The effect of thermal radiation on steady natural convection boundary layer flow over a plate with variable viscosity and magnetic field has been studied in this paper. The effect of suction and injection is also considered in the investigation. The system of partial differential equations governing the nonsimilar flow has been solved numerically using implicit finite difference scheme along with a quasilinearization technique. The thermal radiation has significant effect on heat transfer coefficient and thermal transport in presence of viscosity variation parameter and magnetic field in case of suction and injection.


Sign in / Sign up

Export Citation Format

Share Document