scholarly journals Active fault tolerant / intrusion tolerant cooperative control of discrete NCS based on sliding mode variable structure

2021 ◽  
Vol 1754 (1) ◽  
pp. 012089
Author(s):  
Jun Wang ◽  
XiaoLi Meng
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wang Jun ◽  
Meng Xiao-li

For the linear discrete networked control system (NCS) which may suffer DoS attack on both sides of the controller, when the actuator has time-varying failure, the intelligent sensor unit uses wireless sensors to collect data. According to the large amount of data collected, the active fault tolerance/active passive capacity of linear discrete NCS under the discrete event-triggered communication mechanism (DETCS) is studied. The problem of cooperative controller design is discussed. Firstly, a linear discrete NCS model integrating DETCS, actuator fault, and network attack is established. Then, based on the idea of integral sliding mode control, an active fault-tolerant/attack active passive intrusion-tolerant cooperative controller is designed, and the actuator attack side network attack and sensor side network attack are extended to the state to obtain a new state vector. Then, an adaptive Kalman filter estimator (AKF) estimates the fault and attack information and then adjusts the initial fault-tolerant/intrusion-tolerant cooperative controller in real time according to the estimated information obtained by the adaptive Kalman filter estimator; finally, the MATLAB simulation example is used to verify the improvement of system performance by the designed control law and the saving of network resources by the introduction of DETCS.


2018 ◽  
Vol 160 ◽  
pp. 05009
Author(s):  
Li Xiaoyun ◽  
Du Wei

This paper proposes an integrated fault detection, diagnosis, and reconfigurable control method for attitude tracking of a spacecraft. A novel IMM algorithm, based on the unscented Kalman filter and an index related to the closed-loop system performance, is presented to detect and diagnose the faults. To achieve steady attitude tracking, the sliding mode variable structure controller is designed. When a fault is detected and isolated, the controller structure is reconfigured to compensate the faulty system to maintain the system performance. A simulation example evaluating the attitude tracking process is employed, which demonstrates the efficiency of the proposed approach.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1832
Author(s):  
Jinfeng Liu ◽  
Xin Qu ◽  
Herbert Ho-Ching Iu

Low-voltage and high-current direct current (DC) power supplies are essential for aerospace and shipping. However, its robustness and dynamic response need to be optimized further on some special occasions. In this paper, a novel rectification system platform is built with the low-voltage and high-current permanent magnet synchronous generator (PMSG), in which the DC voltage double closed-loop control system is constructed with the backstepping control method and the sliding mode variable structure (SMVS). In the active component control structure of this system, reasonable virtual control variables are set to obtain the overall structural control variable which satisfied the stability requirements of Lyapunov stability theory. Thus, the fast-tracking and the global adjustment of the system are realized and the robustness is improved. Since the reactive component control structure is simple and no subsystem has to be constructed, the SMVS is used to stabilize the system power factor. By building a simulation model and experimental platform of the 5 V/300 A rectification module based on the PMSG, it is verified that the power factor of the system can reach about 98.5%. When the load mutation occurs, the DC output achieves stability again within 0.02 s, and the system fluctuation rate does not exceed 2%.


Sign in / Sign up

Export Citation Format

Share Document