scholarly journals Elementary chemical analysis of different clay types

2021 ◽  
Vol 1781 (1) ◽  
pp. 012007
Author(s):  
Suresh Aluvihara ◽  
C S Kalpage ◽  
K L Lemle
2007 ◽  
Vol 50 (5) ◽  
pp. 851-860 ◽  
Author(s):  
Maria Sélia Blonski ◽  
Carlos Roberto Appoloni ◽  
Paulo Sérgio Parreira ◽  
Pedro Henrique Arruda Aragão ◽  
Virgilio Franco Nascimento Filho

Energy Dispersion X-Ray Fluorescence Technique (EDXRF) was employed to study the effects of the fumagina disease on the elementary chemical composition of the leaves. The experimental set up consisted of a Mo X-ray tube (Ksub<FONT FACE=Symbol>µ</FONT> = 17.44 keV) with Zr filter and a Si (Li) detector. The measurements were performed with the infected and healthy leaves of citric plants. The elements Ti, Mn, Fe, Cu and Zn were quantified, with an average DL of 69, 12, 8, 4 and 4 µg.g-1 respectively. The obtained concentration for Fe varied from 44 to 192 µg.g-1 in healthy leaves and from 363 to 704 µg.g-1 in infected leaves with fumagina .


1951 ◽  
Vol 28 (6) ◽  
pp. 340
Author(s):  
T. H. Dunkelberger

Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
W.C. de Bruijn ◽  
A.A.W. de Jong ◽  
C.W.J. Sorber

One aspect of enzyme cytochemistry is, whether all macrophage lysosomal hydrolytical enzymes are present in an active form, or are activated upon stimulation. Integrated morphometrical and chemical analysis has been chosen as a tool to illucidate that cytochemical problem. Mouse peritoneal resident macrophages have been used as a model for this complicated integration of morphometrical and element-related data. Only aldehyde-fixed cells were treated with three cytochemical reactions to detect different enzyme activities within one cell (for details see [1,2]). The enzyme-related precipitates anticipated to be differentiated, were:(1).lysosomal barium and sulphur from aryl sulphatase activity,(2).lysosomal cerium and phosphate from acid phosphatase activity and(3).platinum/di-amino-benzidine( D A B) complex from endogenous peroxidase activity.


Sign in / Sign up

Export Citation Format

Share Document