scholarly journals Monitoring of Hydrogen Fuel Cell Modeling with Boost Converter

2021 ◽  
Vol 1844 (1) ◽  
pp. 012018
Author(s):  
Husein Mubarok ◽  
Tegar Hery Santoso
Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 771
Author(s):  
Han-Shin Youn ◽  
Duk-Hyeon Yun ◽  
Woo-Seok Lee ◽  
Il-Oun Lee

Step-up DC/DC converters are needed generally for the hydrogen-fuel-cell (HFC) hybrid railway system since the HFC has difficulty directly generating a high link voltage of over 1500 V for the high-power capacity inverter to drive the traction motor in the vehicle. These step-up DC/DC converters demand a high conversion efficiency with low weight and volume, due to the limited space in vehicle. In this paper, step-up DC/DC converters are presented and are evaluated for the HFC hybrid railway system. By choosing the interleaved boost converter and the 3-level boost converter as promising candidates, characteristics and features of both converters are presented through the analysis of the operational principles. In addition, the optimal design methods and results of boost inductor, output capacitor, and power semiconductor devices are presented based on theoretical analysis and a real design specification for the HFC hybrid railway system. Moreover, an optimal digital control design in terms of dynamic current response and reliability, such as current-balance or voltage-balance controls, is presented in this paper. In order to verify the analysis and design results, prototypes of both converters with the 600 V input and 1200 V/20 kW output specifications are constructed and the performance of the interleaved and 3-level boost converters are demonstrated through the experimental results. The experimental results show that the 3-level boost converter is more suitable for the HFC hybrid railway system in the sense of efficiency, power-density, and dynamic current response.


2014 ◽  
Vol 34 (1) ◽  
pp. 91-97
Author(s):  
Bong-Hee Park ◽  
Ju-Yeop Choi ◽  
Ick Choy ◽  
Sang-Cheol Lee ◽  
Dong-Ha Lee

2021 ◽  
Vol 489 ◽  
pp. 229450
Author(s):  
Sahar Foorginezhad ◽  
Masoud Mohseni-Dargah ◽  
Zahra Falahati ◽  
Rouzbeh Abbassi ◽  
Amir Razmjou ◽  
...  

2021 ◽  
Vol 100 ◽  
pp. 104193
Author(s):  
Dalia Yousri ◽  
Seyedali Mirjalili ◽  
J.A. Tenreiro Machado ◽  
Sudhakar Babu Thanikanti ◽  
Osama elbaksawi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4384
Author(s):  
Hanhee Kim ◽  
Niklas Hartmann ◽  
Maxime Zeller ◽  
Renato Luise ◽  
Tamer Soylu

This paper shows the results of an in-depth techno-economic analysis of the public transport sector in a small to midsize city and its surrounding area. Public battery-electric and hydrogen fuel cell buses are comparatively evaluated by means of a total cost of ownership (TCO) model building on historical data and a projection of market prices. Additionally, a structural analysis of the public transport system of a specific city is performed, assessing best fitting bus lines for the use of electric or hydrogen busses, which is supported by a brief acceptance evaluation of the local citizens. The TCO results for electric buses show a strong cost decrease until the year 2030, reaching 23.5% lower TCOs compared to the conventional diesel bus. The optimal electric bus charging system will be the opportunity (pantograph) charging infrastructure. However, the opportunity charging method is applicable under the assumption that several buses share the same station and there is a “hotspot” where as many as possible bus lines converge. In the case of electric buses for the year 2020, the parameter which influenced the most on the TCO was the battery cost, opposite to the year 2030 in where the bus body cost and fuel cost parameters are the ones that dominate the TCO, due to the learning rate of the batteries. For H2 buses, finding a hotspot is not crucial because they have a similar range to the diesel ones as well as a similar refueling time. H2 buses until 2030 still have 15.4% higher TCO than the diesel bus system. Considering the benefits of a hypothetical scaling-up effect of hydrogen infrastructures in the region, the hydrogen cost could drop to 5 €/kg. In this case, the overall TCO of the hydrogen solution would drop to a slightly lower TCO than the diesel solution in 2030. Therefore, hydrogen buses can be competitive in small to midsize cities, even with limited routes. For hydrogen buses, the bus body and fuel cost make up a large part of the TCO. Reducing the fuel cost will be an important aspect to reduce the total TCO of the hydrogen bus.


Sign in / Sign up

Export Citation Format

Share Document