scholarly journals Oscillatory behavior of solutions of certain third-order neutral differential equation with continuously distributed delay

2021 ◽  
Vol 1850 (1) ◽  
pp. 012091
Author(s):  
M. Sathish Kumar ◽  
V. Ganesan
Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 346
Author(s):  
Belgees Qaraad ◽  
Osama Moaaz ◽  
Shyam Sundar Santra ◽  
Samad Noeiaghdam ◽  
Denis Sidorov ◽  
...  

In this paper, we consider a class of quasilinear third-order differential equations with a delay argument. We establish some conditions of such certain third-order quasi-linear neutral differential equation as oscillatory or almost oscillatory. Those criteria improve, complement and simplify a number of existing results in the literature. Some examples are given to illustrate the importance of our results.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
Jingli Ren ◽  
Zhibo Cheng ◽  
Yueli Chen

By applying Green's function of third-order differential equation and a fixed point theorem in cones, we obtain some sufficient conditions for existence, nonexistence, multiplicity, and Lyapunov stability of positive periodic solutions for a third-order neutral differential equation.


2013 ◽  
Vol 44 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Ethiraj Thandapani ◽  
Renu Rama

The objective of this paper is to study the oscillatory and asymptotic properties of third order mixed neutral differential equation of the form $$ (a(t) [x(t) + b(t) x(t - \tau_{1}) + c(t) x(t + \tau_{2})]'')' + q(t) x^{\alpha}(t - \sigma_{1}) + p(t) x^{\beta}(t + \sigma_{2}) = 0 $$where $a(t), b(t), c(t), q(t)$ and $p(t)$ are positive continuous functions, $\alpha$ and $\beta$ are ratios of odd positive integers, $\tau_{1}, \tau_{2}, \sigma_{1}$ and $\sigma_{2}$ are positive constants. We establish some sufficient conditions which ensure that all solutions are either oscillatory or converge to zero. Some examples are provided to illustrate the main results.


Sign in / Sign up

Export Citation Format

Share Document