scholarly journals Design of Three Variable Camera Lens Control Circuit Based on C8051F311

2021 ◽  
Vol 1871 (1) ◽  
pp. 012089
Author(s):  
Ziqiang Zeng ◽  
Yuhan Wang
Keyword(s):  
2019 ◽  
Vol 5 (1) ◽  
pp. 35-45
Author(s):  
Markus Dwiyanto Tobi ◽  
Alimuddin Mappa

The role of the power supply device is to produce, process and distribute energy sources. Telecommunication equipment can only operate if it has continuous supply. Therefore, to maintain the continuity of the supply, a UPS (Uninterruptable Power Supply) device system is needed so that the supply to the Essential Load device will remain available so that continuity will be maintained. This research designs and proposes how a series of automatic redundant switch systems on UPS to ensure the availability of power supply for the main equipment of telecommunications systems. The Auto switch circuit is designed to have 3 (three) working stages which will trigger the relay driver as control circuit, namely the normal working condition of the contactor input K1 is present, the input condition is zero (lost), and the input condition is present. This system can automatically supply power to telecommunications equipment.


Author(s):  
Aparna B. Barbadekar ◽  
Pradeep M. Patil

Abstract The paper proposes a system consisting of novel programmable system on chip (PSoC)-controlled phase shifters which in turn guides the beam of an antenna array attached to it. Four antennae forming an array receive individual inputs from the programmable phase shifters (IC 2484). The input to the PSoC-based phase shifter is provided from an optimized 1:4 Wilkinson power divider. The antenna consists of an inverted L-shaped dipole on the front and two mirrored inverted L-shaped dipoles mounted on a rectangular conductive structure on the back which resonates in the ISM/Wi-Fi band (2.40–2.48 GHz). The power divider is designed to provide the feed to the phase shifter using a beamforming network while ensuring good isolation among the ports. The power divider has measured S11, S21, S31, S41, and S51 to be −14, −6.25, −6.31, −6.28, and −6.31 dB, respectively at a frequency of 2.45 GHz. The ingenious controller is designed in-house using a PSoC microcontroller to regulate the control voltage of individual phase shifter IC and generate progressive phase shifts. To validate the calibration of the in-house designed control circuit, the phased array is simulated using $s_p^2$ touchstone file of IC 2484. This designed control circuit exhibits low insertion loss close to −8.5 dB, voltage standing wave ratio of 1.58:1, and reflection coefficient (S11) is −14.36 dB at 2.45 GHz. Low insertion loss variations confirm that the phased-array antenna gives equal amplitude and phase. The beamforming radiation patterns for different scan angles (30, 60, and 90°) for experimental and simulated phased-array antenna are matched accurately showing the accuracy of the control circuit designed. The average experimental and simulated gain is 13.03 and 13.48 dBi respectively. The in-house designed controller overcomes the primary limitations associated with the present electromechanical phased array such as cost weight, size, power consumption, and complexity in design which limits the use of a phased array to military applications only. The current study with novel design and enhanced performance makes the system worthy of the practical use of phased-array antennas for common society at large.


2016 ◽  
Vol 52 (12) ◽  
pp. 1045-1047 ◽  
Author(s):  
R. Enne ◽  
M. Hofbauer ◽  
N. Zecevic ◽  
B. Goll ◽  
H. Zimmermann

2013 ◽  
Vol 709 ◽  
pp. 408-412
Author(s):  
Yan Ling Zhao ◽  
Rong Xing Liu

Abstract. A mid-frequency magnetron sputtering (MFMS) power supply based on TL494 and MCU was introduced. A Buck Chopper and full bridge inverter were applied to the main circuit. The PWM controller TL494 was used in the Buck voltage-regulation control circuit to realize closed loop control. The drive signal of the IGBT in full bridge inverter was based on precise digital pulse width modulator (DPWM) signal produced by the MCU M30290. The DPWM can be set by potentiometer so the power supply can output the square wave with adjustable frequency and duty cycle. The power supply was operated in constant current mode. For micro or strong arcing of the target, different safeguards were adopted by the control circuit. At last, the system test and experimental results show that the stability, reliability and tuning range of the MFMS power supply can meet the requirements of the magnetron sputtering coating.


Optik ◽  
2021 ◽  
pp. 167895
Author(s):  
Jong-Chol Kang ◽  
Chol-Su Kim ◽  
Il-Jun Pak ◽  
Ju-Ryong Son ◽  
Chol-Sun Kim

Sign in / Sign up

Export Citation Format

Share Document